drivers: spi_mcux_lpspi: Clean up DMA path

Clean up DMA path of code.

Signed-off-by: Declan Snyder <declan.snyder@nxp.com>
This commit is contained in:
Declan Snyder 2024-09-20 20:11:55 -05:00 committed by Anas Nashif
commit 7271000fe5

View file

@ -86,9 +86,7 @@ struct spi_mcux_data {
struct spi_dma_stream dma_rx; struct spi_dma_stream dma_rx;
struct spi_dma_stream dma_tx; struct spi_dma_stream dma_tx;
/* dummy value used for transferring NOP when tx buf is null */ /* dummy value used for transferring NOP when tx buf is null */
uint32_t dummy_tx_buffer; uint32_t dummy_buffer;
/* dummy value used to read RX data into when rx buf is null */
uint32_t dummy_rx_buffer;
#endif #endif
}; };
@ -287,140 +285,208 @@ done:
spi_context_complete(&data->ctx, spi_dev, 0); spi_context_complete(&data->ctx, spi_dev, 0);
} }
static int spi_mcux_dma_tx_load(const struct device *dev, const uint8_t *buf, size_t len) static struct dma_block_config *spi_mcux_dma_common_load(struct spi_dma_stream *stream,
const struct device *dev,
const uint8_t *buf, size_t len)
{ {
struct spi_mcux_data *data = dev->data; struct spi_mcux_data *data = dev->data;
struct dma_block_config *blk_cfg; struct dma_block_config *blk_cfg = &stream->dma_blk_cfg;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
/* remember active TX DMA channel (used in callback) */
struct spi_dma_stream *stream = &data->dma_tx;
blk_cfg = &stream->dma_blk_cfg;
/* prepare the block for this TX DMA channel */ /* prepare the block for this TX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config)); memset(blk_cfg, 0, sizeof(struct dma_block_config));
blk_cfg->block_size = len;
if (buf == NULL) { if (buf == NULL) {
/* Treat the transfer as a peripheral to peripheral one, so that DMA blk_cfg->source_address = (uint32_t)&data->dummy_buffer;
* reads from this address each time blk_cfg->dest_address = (uint32_t)&data->dummy_buffer;
*/ /* pretend it is peripheral xfer so DMA just xfer to dummy buf */
blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL; stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL;
} else { } else {
/* tx direction has memory as source and periph as dest. */
blk_cfg->source_address = (uint32_t)buf; blk_cfg->source_address = (uint32_t)buf;
stream->dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL; blk_cfg->dest_address = (uint32_t)buf;
} }
/* Enable scatter/gather */
blk_cfg->source_gather_en = 1;
/* Dest is LPSPI tx fifo */
blk_cfg->dest_address = LPSPI_GetTxRegisterAddress(base);
blk_cfg->block_size = len;
/* Transfer 1 byte each DMA loop */ /* Transfer 1 byte each DMA loop */
stream->dma_cfg.source_burst_length = 1; stream->dma_cfg.source_burst_length = 1;
stream->dma_cfg.user_data = (void *)dev;
stream->dma_cfg.head_block = blk_cfg;
return blk_cfg;
}
static int spi_mcux_dma_tx_load(const struct device *dev, const uint8_t *buf, size_t len)
{
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
struct spi_mcux_data *data = dev->data;
/* remember active TX DMA channel (used in callback) */
struct spi_dma_stream *stream = &data->dma_tx;
struct dma_block_config *blk_cfg = spi_mcux_dma_common_load(stream, dev, buf, len);
if (buf != NULL) {
/* tx direction has memory as source and periph as dest. */
stream->dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
}
/* Dest is LPSPI tx fifo */
blk_cfg->dest_address = LPSPI_GetTxRegisterAddress(base);
stream->dma_cfg.head_block = &stream->dma_blk_cfg;
/* give the client dev as arg, as the callback comes from the dma */ /* give the client dev as arg, as the callback comes from the dma */
stream->dma_cfg.user_data = (struct device *)dev;
/* pass our client origin to the dma: data->dma_tx.dma_channel */ /* pass our client origin to the dma: data->dma_tx.dma_channel */
return dma_config(data->dma_tx.dma_dev, data->dma_tx.channel, &stream->dma_cfg); return dma_config(stream->dma_dev, stream->channel, &stream->dma_cfg);
} }
static int spi_mcux_dma_rx_load(const struct device *dev, uint8_t *buf, size_t len) static int spi_mcux_dma_rx_load(const struct device *dev, uint8_t *buf, size_t len)
{ {
struct spi_mcux_data *data = dev->data;
struct dma_block_config *blk_cfg;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base); LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
struct spi_mcux_data *data = dev->data;
/* retrieve active RX DMA channel (used in callback) */ /* retrieve active RX DMA channel (used in callback) */
struct spi_dma_stream *stream = &data->dma_rx; struct spi_dma_stream *stream = &data->dma_rx;
struct dma_block_config *blk_cfg = spi_mcux_dma_common_load(stream, dev, buf, len);
blk_cfg = &stream->dma_blk_cfg; if (buf != NULL) {
/* prepare the block for this RX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config));
if (buf == NULL) {
/* Treat the transfer as a peripheral to peripheral one, so that DMA
* reads from this address each time
*/
blk_cfg->dest_address = (uint32_t)&data->dummy_rx_buffer;
stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL;
} else {
/* rx direction has periph as source and mem as dest. */ /* rx direction has periph as source and mem as dest. */
blk_cfg->dest_address = (uint32_t)buf;
stream->dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; stream->dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
} }
blk_cfg->block_size = len;
/* Enable scatter/gather */
blk_cfg->dest_scatter_en = 1;
/* Source is LPSPI rx fifo */ /* Source is LPSPI rx fifo */
blk_cfg->source_address = LPSPI_GetRxRegisterAddress(base); blk_cfg->source_address = LPSPI_GetRxRegisterAddress(base);
stream->dma_cfg.source_burst_length = 1;
stream->dma_cfg.head_block = blk_cfg;
stream->dma_cfg.user_data = (struct device *)dev;
/* pass our client origin to the dma: data->dma_rx.channel */ /* pass our client origin to the dma: data->dma_rx.channel */
return dma_config(data->dma_rx.dma_dev, data->dma_rx.channel, &stream->dma_cfg); return dma_config(stream->dma_dev, stream->channel, &stream->dma_cfg);
} }
static int wait_dma_rx_tx_done(const struct device *dev) static int wait_dma_rx_tx_done(const struct device *dev)
{ {
struct spi_mcux_data *data = dev->data; struct spi_mcux_data *data = dev->data;
int ret = -1; int ret;
while (1) { do {
ret = spi_context_wait_for_completion(&data->ctx); ret = spi_context_wait_for_completion(&data->ctx);
if (ret) { if (ret) {
LOG_DBG("Timed out waiting for SPI context to complete"); LOG_DBG("Timed out waiting for SPI context to complete");
return ret; return ret;
} } else if (data->status_flags & LPSPI_DMA_ERROR_FLAG) {
if (data->status_flags & LPSPI_DMA_ERROR_FLAG) {
return -EIO; return -EIO;
} }
} while (!((data->status_flags & LPSPI_DMA_DONE_FLAG) == LPSPI_DMA_DONE_FLAG));
if ((data->status_flags & LPSPI_DMA_DONE_FLAG) == LPSPI_DMA_DONE_FLAG) { LOG_DBG("DMA block completed");
LOG_DBG("DMA block completed"); return 0;
return 0;
}
}
} }
static inline int spi_mcux_dma_rxtx_load(const struct device *dev, size_t *dma_size) static inline int spi_mcux_dma_rxtx_load(const struct device *dev, size_t *dma_size)
{ {
struct spi_mcux_data *lpspi_data = dev->data; struct spi_mcux_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int ret = 0; int ret = 0;
/* Clear status flags */ /* Clear status flags */
lpspi_data->status_flags = 0U; data->status_flags = 0U;
/* Load dma blocks of equal length */
*dma_size = MIN(lpspi_data->ctx.tx_len, lpspi_data->ctx.rx_len);
if (*dma_size == 0) {
*dma_size = MAX(lpspi_data->ctx.tx_len, lpspi_data->ctx.rx_len);
}
ret = spi_mcux_dma_tx_load(dev, lpspi_data->ctx.tx_buf, *dma_size); /* Load dma blocks of equal length */
*dma_size = spi_context_max_continuous_chunk(ctx);
ret = spi_mcux_dma_tx_load(dev, ctx->tx_buf, *dma_size);
if (ret != 0) { if (ret != 0) {
return ret; return ret;
} }
ret = spi_mcux_dma_rx_load(dev, lpspi_data->ctx.rx_buf, *dma_size); ret = spi_mcux_dma_rx_load(dev, ctx->rx_buf, *dma_size);
if (ret != 0) { if (ret != 0) {
return ret; return ret;
} }
/* Start DMA */ /* Start DMA */
ret = dma_start(lpspi_data->dma_tx.dma_dev, lpspi_data->dma_tx.channel); ret = dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
if (ret != 0) { if (ret != 0) {
return ret; return ret;
} }
ret = dma_start(lpspi_data->dma_rx.dma_dev, lpspi_data->dma_rx.channel); ret = dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
return ret; return ret;
} }
#ifdef CONFIG_SPI_ASYNC
static int transceive_dma_async(const struct device *dev, spi_callback_t cb, void *userdata)
{
struct spi_mcux_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
size_t dma_size;
int ret;
ctx->asynchronous = true;
ctx->callback = cb;
ctx->callback_data = userdata;
ret = spi_mcux_dma_rxtx_load(dev, &dma_size);
if (ret) {
return ret;
}
/* Enable DMA Requests */
LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
return 0;
}
#else
#define transceive_dma_async(...) 0
#endif /* CONFIG_SPI_ASYNC */
static int transceive_dma_sync(const struct device *dev)
{
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
struct spi_mcux_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
size_t dma_size;
int ret;
spi_context_cs_control(ctx, true);
/* Send each spi buf via DMA, updating context as DMA completes */
while (ctx->rx_len > 0 || ctx->tx_len > 0) {
/* Load dma block */
ret = spi_mcux_dma_rxtx_load(dev, &dma_size);
if (ret) {
return ret;
}
#ifdef CONFIG_SOC_SERIES_MCXN
while (!(LPSPI_GetStatusFlags(base) & kLPSPI_TxDataRequestFlag)) {
/* wait until previous tx finished */
}
#endif
/* Enable DMA Requests */
LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
/* Wait for DMA to finish */
ret = wait_dma_rx_tx_done(dev);
if (ret) {
return ret;
}
#ifndef CONFIG_SOC_SERIES_MCXN
while ((LPSPI_GetStatusFlags(base) & kLPSPI_ModuleBusyFlag)) {
/* wait until module is idle */
}
#endif
/* Disable DMA */
LPSPI_DisableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
/* Update SPI contexts with amount of data we just sent */
spi_context_update_tx(ctx, 1, dma_size);
spi_context_update_rx(ctx, 1, dma_size);
}
spi_context_cs_control(ctx, false);
base->TCR = 0;
return 0;
}
static int transceive_dma(const struct device *dev, const struct spi_config *spi_cfg, static int transceive_dma(const struct device *dev, const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs,
bool asynchronous, spi_callback_t cb, void *userdata) bool asynchronous, spi_callback_t cb, void *userdata)
@ -428,17 +494,15 @@ static int transceive_dma(const struct device *dev, const struct spi_config *spi
struct spi_mcux_data *data = dev->data; struct spi_mcux_data *data = dev->data;
LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base); LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
int ret; int ret;
size_t dma_size;
if (!asynchronous) { if (!asynchronous) {
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg); spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
} }
ret = spi_mcux_configure(dev, spi_cfg); ret = spi_mcux_configure(dev, spi_cfg);
if (ret) { if (ret && !asynchronous) {
if (!asynchronous) { goto out;
spi_context_release(&data->ctx, ret); } else if (ret) {
}
return ret; return ret;
} }
@ -451,67 +515,14 @@ static int transceive_dma(const struct device *dev, const struct spi_config *spi
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
if (!asynchronous) { if (asynchronous) {
spi_context_cs_control(&data->ctx, true); ret = transceive_dma_async(dev, cb, userdata);
} else {
/* Send each spi buf via DMA, updating context as DMA completes */ ret = transceive_dma_sync(dev);
while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) { }
/* Load dma block */
ret = spi_mcux_dma_rxtx_load(dev, &dma_size);
if (ret != 0) {
goto out;
}
#ifdef CONFIG_SOC_SERIES_MCXN
while (!(LPSPI_GetStatusFlags(base) & kLPSPI_TxDataRequestFlag)) {
/* wait until previous tx finished */
}
#endif
/* Enable DMA Requests */
LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
/* Wait for DMA to finish */
ret = wait_dma_rx_tx_done(dev);
if (ret != 0) {
goto out;
}
#ifndef CONFIG_SOC_SERIES_MCXN
while ((LPSPI_GetStatusFlags(base) & kLPSPI_ModuleBusyFlag)) {
/* wait until module is idle */
}
#endif
/* Disable DMA */
LPSPI_DisableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
/* Update SPI contexts with amount of data we just sent */
spi_context_update_tx(&data->ctx, 1, dma_size);
spi_context_update_rx(&data->ctx, 1, dma_size);
}
spi_context_cs_control(&data->ctx, false);
base->TCR = 0;
out: out:
spi_context_release(&data->ctx, ret); spi_context_release(&data->ctx, ret);
}
#if CONFIG_SPI_ASYNC
else {
data->ctx.asynchronous = asynchronous;
data->ctx.callback = cb;
data->ctx.callback_data = userdata;
ret = spi_mcux_dma_rxtx_load(dev, &dma_size);
if (ret != 0) {
goto out;
}
/* Enable DMA Requests */
LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
}
#endif
return ret; return ret;
} }
#else #else