drivers: spi: introduce SPI driver for NXP S32

This introduces SPI driver for NXP S32 platform

Signed-off-by: Dat Nguyen Duy <dat.nguyenduy@nxp.com>
This commit is contained in:
Dat Nguyen Duy 2022-10-20 16:29:56 +07:00 committed by Carles Cufí
commit 6d866b62bf
9 changed files with 1019 additions and 0 deletions

View file

@ -41,6 +41,8 @@ The boards support the following hardware features:
+-----------+------------+-------------------------------------+
| LINFlexD | on-chip | serial |
+-----------+------------+-------------------------------------+
| SPI | on-chip | spi |
+-----------+------------+-------------------------------------+
Other hardware features are not currently supported by the port.

View file

@ -12,3 +12,43 @@
pinctrl-names = "default";
status = "okay";
};
&spi0 {
clock-frequency = <100000000>;
};
&spi1 {
clock-frequency = <100000000>;
};
&spi2 {
clock-frequency = <100000000>;
};
&spi3 {
clock-frequency = <120000000>;
};
&spi4 {
clock-frequency = <120000000>;
};
&spi5 {
clock-frequency = <120000000>;
};
&spi6 {
clock-frequency = <120000000>;
};
&spi7 {
clock-frequency = <100000000>;
};
&spi8 {
clock-frequency = <100000000>;
};
&spi9 {
clock-frequency = <100000000>;
};

View file

@ -33,6 +33,7 @@ zephyr_library_sources_ifdef(CONFIG_SPI_GD32 spi_gd32.c)
zephyr_library_sources_ifdef(CONFIG_SPI_MCHP_QSPI spi_mchp_mss_qspi.c)
zephyr_library_sources_ifdef(CONFIG_SPI_PL022 spi_pl022.c)
zephyr_library_sources_ifdef(CONFIG_SPI_ANDES_ATCSPI200 spi_andes_atcspi200.c)
zephyr_library_sources_ifdef(CONFIG_NXP_S32_SPI spi_nxp_s32.c)
zephyr_library_sources_ifdef(CONFIG_SPI_ASYNC spi_signal.c)
zephyr_library_sources_ifdef(CONFIG_USERSPACE spi_handlers.c)

View file

@ -105,4 +105,6 @@ source "drivers/spi/Kconfig.pl022"
source "drivers/spi/Kconfig.andes_atcspi200"
source "drivers/spi/Kconfig.nxp_s32"
endif # SPI

View file

@ -0,0 +1,19 @@
# Copyright 2022 NXP
# SPDX-License-Identifier: Apache-2.0
config NXP_S32_SPI
bool "NXP S32 SPI driver"
default y
depends on DT_HAS_NXP_S32_SPI_ENABLED
help
Enable support for NXP S32 SPI driver.
if NXP_S32_SPI
config NXP_S32_SPI_INTERRUPT
bool "NXP S32 SPI Interrupt Support"
default y
help
Enable Interrupt support for SPI communication.
endif # NXP_S32_SPI

716
drivers/spi/spi_nxp_s32.c Normal file
View file

@ -0,0 +1,716 @@
/*
* Copyright 2022 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/pinctrl.h>
#include "spi_nxp_s32.h"
extern Spi_Ip_StateStructureType * Spi_Ip_apxStateStructureArray[SPI_INSTANCE_COUNT];
static bool spi_nxp_s32_last_packet(struct spi_nxp_s32_data *data)
{
struct spi_context *ctx = &data->ctx;
if (ctx->tx_count <= 1U && ctx->rx_count <= 1U) {
if (!spi_context_tx_on(ctx) && (data->transfer_len == ctx->rx_len)) {
return true;
}
if (!spi_context_rx_on(ctx) && (data->transfer_len == ctx->tx_len)) {
return true;
}
if ((ctx->rx_len == ctx->tx_len) && (data->transfer_len == ctx->tx_len)) {
return true;
}
}
return false;
}
static inline bool spi_nxp_s32_transfer_done(struct spi_context *ctx)
{
return !spi_context_tx_on(ctx) && !spi_context_rx_on(ctx);
}
static int spi_nxp_s32_transfer_next_packet(const struct device *dev)
{
const struct spi_nxp_s32_config *config = dev->config;
struct spi_nxp_s32_data *data = dev->data;
Spi_Ip_StatusType status;
Spi_Ip_CallbackType data_cb;
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
data_cb = config->cb;
#else
data_cb = NULL;
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
data->transfer_len = spi_context_max_continuous_chunk(&data->ctx);
data->transfer_len = MIN(data->transfer_len,
SPI_NXP_S32_MAX_BYTES_PER_PACKAGE(data->bytes_per_frame));
/*
* Keep CS signal asserted until the last package, there is no other way
* than directly intervening to internal state of low level driver
*/
Spi_Ip_apxStateStructureArray[config->instance]->KeepCs = !spi_nxp_s32_last_packet(data);
status = Spi_Ip_AsyncTransmit(&data->transfer_cfg, (uint8_t *)data->ctx.tx_buf,
data->ctx.rx_buf, data->transfer_len, data_cb);
if (status) {
LOG_ERR("Transfer could not start");
return -EIO;
}
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
return 0;
#else
while (Spi_Ip_GetStatus(config->instance) == SPI_IP_BUSY) {
Spi_Ip_ManageBuffers(config->instance);
}
if (Spi_Ip_GetStatus(config->instance) == SPI_IP_FAULT) {
return -EIO;
}
return 0;
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
}
/*
* The function to get Scaler and Prescaler for corresponding registers
* to configure the baudrate for the transmission. The real frequency is
* computated to ensure it will always equal or the nearest approximation
* lower to the expected one.
*/
static void spi_nxp_s32_getbestfreq(uint32_t clock_frequency,
uint32_t requested_baud,
struct spi_nxp_s32_baudrate_param *best_baud)
{
uint8_t scaler;
uint8_t prescaler;
uint32_t low, high;
uint32_t curr_freq;
uint32_t best_freq = 0U;
static const uint8_t prescaler_arr[SPI_NXP_S32_NUM_PRESCALER] = {2U, 3U, 5U, 7U};
static const uint16_t scaller_arr[SPI_NXP_S32_NUM_SCALER] = {
2U, 4U, 6U, 8U, 16U, 32U, 64U, 128U, 256U, 512U, 1024U, 2048U,
4096U, 8192U, 16384U, 32768U
};
for (prescaler = 0U; prescaler < SPI_NXP_S32_NUM_PRESCALER; prescaler++) {
low = 0U;
high = SPI_NXP_S32_NUM_SCALER - 1U;
/* Implement golden section search algorithm */
do {
scaler = (low + high) / 2U;
curr_freq = clock_frequency * 1U /
(prescaler_arr[prescaler] * scaller_arr[scaler]);
/*
* If the scaler make current frequency higher than the
* expected one, skip the next step
*/
if (curr_freq > requested_baud) {
low = scaler;
continue;
} else {
high = scaler;
}
if ((requested_baud - best_freq) > (requested_baud - curr_freq)) {
best_freq = curr_freq;
best_baud->prescaler = prescaler;
best_baud->scaler = scaler;
}
if (best_freq == requested_baud) {
break;
}
} while ((high - low) > 1U);
if ((high - low) <= 1U) {
if (high == scaler) {
/* use low value */
scaler = low;
} else {
scaler = high;
}
curr_freq = clock_frequency * 1U /
(prescaler_arr[prescaler] * scaller_arr[scaler]);
if (curr_freq <= requested_baud) {
if ((requested_baud - best_freq) > (requested_baud - curr_freq)) {
best_freq = curr_freq;
best_baud->prescaler = prescaler;
best_baud->scaler = scaler;
}
}
}
if (best_freq == requested_baud) {
break;
}
}
best_baud->frequency = best_freq;
}
/*
* The function to get Scaler and Prescaler for corresponding registers
* to configure the delay for the transmission. The real delay is computated
* to ensure it will always equal or the nearest approximation higher to
* the expected one. In the worst case, use the delay as much as possible.
*/
static void spi_nxp_s32_getbestdelay(uint32_t clock_frequency, uint32_t requested_delay,
uint8_t *best_scaler, uint8_t *best_prescaler)
{
uint32_t current_delay;
uint8_t scaler, prescaler;
uint32_t low, high;
uint32_t best_delay = 0xFFFFFFFFU;
/* The scaler array is a power of two, so do not need to be defined */
static const uint8_t prescaler_arr[SPI_NXP_S32_NUM_PRESCALER] = {1U, 3U, 5U, 7U};
clock_frequency = clock_frequency / MHZ(1);
for (prescaler = 0; prescaler < SPI_NXP_S32_NUM_PRESCALER; prescaler++) {
low = 0U;
high = SPI_NXP_S32_NUM_SCALER - 1U;
do {
scaler = (low + high) / 2U;
current_delay = NSEC_PER_USEC * prescaler_arr[prescaler]
* (1U << (scaler + 1)) / clock_frequency;
/*
* If the scaler make current delay smaller than
* the expected one, skip the next step
*/
if (current_delay < requested_delay) {
low = scaler;
continue;
} else {
high = scaler;
}
if ((best_delay - requested_delay) > (current_delay - requested_delay)) {
best_delay = current_delay;
*best_prescaler = prescaler;
*best_scaler = scaler;
}
if (best_delay == requested_delay) {
break;
}
} while ((high - low) > 1U);
if ((high - low) <= 1U) {
if (high == scaler) {
/* use low value */
scaler = low;
} else {
scaler = high;
}
current_delay = NSEC_PER_USEC * prescaler_arr[prescaler]
* (1U << (scaler + 1)) / clock_frequency;
if (current_delay >= requested_delay) {
if ((best_delay - requested_delay) >
(current_delay - requested_delay)) {
best_delay = current_delay;
*best_prescaler = prescaler;
*best_scaler = scaler;
}
}
}
if (best_delay == requested_delay) {
break;
}
}
if (best_delay == 0xFFFFFFFFU) {
/* Use the delay as much as possible */
*best_prescaler = SPI_NXP_S32_NUM_PRESCALER - 1U;
*best_scaler = SPI_NXP_S32_NUM_SCALER - 1U;
}
}
static int spi_nxp_s32_configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_nxp_s32_config *config = dev->config;
struct spi_nxp_s32_data *data = dev->data;
bool clk_phase, clk_polarity;
bool lsb, hold_cs;
bool slave_mode, cs_active_high;
uint8_t frame_size;
struct spi_nxp_s32_baudrate_param best_baud = {0};
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
clk_phase = !!(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA);
clk_polarity = !!(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL);
hold_cs = !!(spi_cfg->operation & SPI_HOLD_ON_CS);
lsb = !!(spi_cfg->operation & SPI_TRANSFER_LSB);
slave_mode = !!(SPI_OP_MODE_GET(spi_cfg->operation));
frame_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
cs_active_high = !!(spi_cfg->operation & SPI_CS_ACTIVE_HIGH);
if (slave_mode == (!!(config->spi_hw_cfg->Mcr & SPI_MCR_MSTR_MASK))) {
LOG_ERR("SPI mode (master/slave) must be same as configured in DT");
return -ENOTSUP;
}
if (slave_mode && !IS_ENABLED(CONFIG_SPI_SLAVE)) {
LOG_ERR("Kconfig for enable SPI in slave mode is not enabled");
return -ENOTSUP;
}
if (slave_mode && lsb) {
LOG_ERR("SPI does not support to shifting out with LSB in slave mode");
return -ENOTSUP;
}
if (spi_cfg->slave >= config->num_cs) {
LOG_ERR("Slave %d excess the allowed maximum value (%d)",
spi_cfg->slave, config->num_cs - 1);
return -ENOTSUP;
}
if (frame_size > 32U) {
LOG_ERR("Unsupported frame size %d bits", frame_size);
return -ENOTSUP;
}
if ((spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -ENOTSUP;
}
if (spi_cfg->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -ENOTSUP;
}
if (cs_active_high && (spi_cfg->cs == NULL)) {
LOG_ERR("For CS has active state is high, a GPIO pin must be used to"
" control CS line instead");
return -ENOTSUP;
}
if (!slave_mode) {
if ((spi_cfg->frequency < SPI_NXP_S32_MIN_FREQ) ||
(spi_cfg->frequency > SPI_NXP_S32_MAX_FREQ)) {
LOG_ERR("The frequency is out of range");
return -ENOTSUP;
}
spi_nxp_s32_getbestfreq(config->clock_frequency, spi_cfg->frequency, &best_baud);
data->transfer_cfg.Ctar &= ~(SPI_CTAR_BR_MASK | SPI_CTAR_PBR_MASK);
data->transfer_cfg.Ctar |= SPI_CTAR_BR(best_baud.scaler) |
SPI_CTAR_PBR(best_baud.prescaler);
data->transfer_cfg.PushrCmd &= ~((SPI_PUSHR_CONT_MASK | SPI_PUSHR_PCS_MASK) >> 16U);
if (spi_cfg->cs == NULL) {
/* Use inner CS signal from SPI module */
data->transfer_cfg.PushrCmd |= hold_cs << 15U;
data->transfer_cfg.PushrCmd |= (1U << spi_cfg->slave);
}
}
data->transfer_cfg.Ctar &= ~(SPI_CTAR_CPHA_MASK | SPI_CTAR_CPOL_MASK);
data->transfer_cfg.Ctar |= SPI_CTAR_CPHA(clk_phase) | SPI_CTAR_CPOL(clk_polarity);
Spi_Ip_UpdateFrameSize(&data->transfer_cfg, frame_size);
Spi_Ip_UpdateLsb(&data->transfer_cfg, lsb);
data->ctx.config = spi_cfg;
data->bytes_per_frame = SPI_NXP_S32_BYTE_PER_FRAME(frame_size);
if (slave_mode) {
LOG_DBG("SPI configuration: cpol = %u, cpha = %u,"
" lsb = %u, frame_size = %u, mode: slave",
clk_polarity, clk_phase, lsb, frame_size);
} else {
LOG_DBG("SPI configuration: frequency = %uHz, cpol = %u,"
" cpha = %u, lsb = %u, hold_cs = %u, frame_size = %u,"
" mode: master, CS = %u\n",
best_baud.frequency, clk_polarity, clk_phase,
lsb, hold_cs, frame_size, spi_cfg->slave);
}
return 0;
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
struct spi_nxp_s32_data *data = dev->data;
struct spi_context *context = &data->ctx;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
#ifndef CONFIG_NXP_S32_SPI_INTERRUPT
if (asynchronous) {
return -ENOTSUP;
}
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
spi_context_lock(context, asynchronous, cb, userdata, spi_cfg);
ret = spi_nxp_s32_configure(dev, spi_cfg);
if (ret) {
LOG_ERR("An error occurred in the SPI configuration");
spi_context_release(context, ret);
return ret;
}
spi_context_buffers_setup(context, tx_bufs, rx_bufs, 1U);
if (spi_nxp_s32_transfer_done(context)) {
spi_context_release(context, 0);
return 0;
}
spi_context_cs_control(context, true);
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
ret = spi_nxp_s32_transfer_next_packet(dev);
if (!ret) {
ret = spi_context_wait_for_completion(context);
} else {
spi_context_cs_control(context, false);
}
#else
do {
ret = spi_nxp_s32_transfer_next_packet(dev);
if (!ret) {
spi_context_update_tx(context, 1U, data->transfer_len);
spi_context_update_rx(context, 1U, data->transfer_len);
}
} while (!ret && !spi_nxp_s32_transfer_done(context));
spi_context_cs_control(context, false);
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(context) && !ret) {
ret = data->ctx.recv_frames;
}
#endif /* CONFIG_SPI_SLAVE */
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
spi_context_release(context, ret);
return ret;
}
static int spi_nxp_s32_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_nxp_s32_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t callback,
void *userdata)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, callback, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_nxp_s32_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nxp_s32_data *data = dev->data;
(void)spi_cfg;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_nxp_s32_init(const struct device *dev)
{
const struct spi_nxp_s32_config *config = dev->config;
struct spi_nxp_s32_data *data = dev->data;
uint8_t scaler, prescaler;
uint32_t ctar = 0;
int ret = 0;
ret = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
if (Spi_Ip_Init(config->spi_hw_cfg)) {
return -EBUSY;
}
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
if (Spi_Ip_UpdateTransferMode(config->instance, SPI_IP_INTERRUPT)) {
return -EBUSY;
}
config->irq_config_func(dev);
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
/*
* Update the delay timings configuration that are
* applied for all inner CS signals of SPI module.
*/
spi_nxp_s32_getbestdelay(config->clock_frequency,
config->sck_cs_delay, &scaler, &prescaler);
ctar |= SPI_CTAR_ASC(scaler) | SPI_CTAR_PASC(prescaler);
spi_nxp_s32_getbestdelay(config->clock_frequency,
config->cs_sck_delay, &scaler, &prescaler);
ctar |= SPI_CTAR_CSSCK(scaler) | SPI_CTAR_PCSSCK(prescaler);
spi_nxp_s32_getbestdelay(config->clock_frequency,
config->cs_cs_delay, &scaler, &prescaler);
ctar |= SPI_CTAR_DT(scaler) | SPI_CTAR_PDT(prescaler);
data->transfer_cfg.Ctar |= ctar;
data->transfer_cfg.DeviceParams = &data->transfer_params;
ret = spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
return ret;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
static void spi_nxp_s32_transfer_callback(const struct device *dev, Spi_Ip_EventType event)
{
struct spi_nxp_s32_data *data = dev->data;
int ret = 0;
if (event == SPI_IP_EVENT_END_TRANSFER) {
spi_context_update_tx(&data->ctx, 1U, data->transfer_len);
spi_context_update_rx(&data->ctx, 1U, data->transfer_len);
if (spi_nxp_s32_transfer_done(&data->ctx)) {
spi_context_complete(&data->ctx, dev, 0);
spi_context_cs_control(&data->ctx, false);
} else {
ret = spi_nxp_s32_transfer_next_packet(dev);
}
} else {
LOG_ERR("Failing in transfer_callback");
ret = -EIO;
}
if (ret) {
spi_context_complete(&data->ctx, dev, ret);
spi_context_cs_control(&data->ctx, false);
}
}
#endif /*CONFIG_NXP_S32_SPI_INTERRUPT*/
static const struct spi_driver_api spi_nxp_s32_driver_api = {
.transceive = spi_nxp_s32_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_nxp_s32_transceive_async,
#endif
.release = spi_nxp_s32_release,
};
#define SPI_NXP_S32_NODE(n) DT_NODELABEL(spi##n)
#define SPI_NXP_S32_NUM_CS(n) DT_PROP(SPI_NXP_S32_NODE(n), num_cs)
#define SPI_NXP_S32_IS_MASTER(n) !DT_PROP(SPI_NXP_S32_NODE(n), slave)
#ifdef CONFIG_SPI_SLAVE
#define SPI_NXP_S32_SET_SLAVE(n) .SlaveMode = DT_PROP(SPI_NXP_S32_NODE(n), slave),
#else
#define SPI_NXP_S32_SET_SLAVE(n)
#endif
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
#define SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n) \
.irq_config_func = spi_nxp_s32_config_func_##n,
#define SPI_NXP_S32_INTERRUPT_DEFINE(n) \
extern void Spi_Ip_SPI_##n##_IRQHandler(void); \
static void spi_nxp_s32_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_IRQN(SPI_NXP_S32_NODE(n)), \
DT_IRQ(SPI_NXP_S32_NODE(n), priority), \
Spi_Ip_SPI_##n##_IRQHandler, \
DEVICE_DT_GET(SPI_NXP_S32_NODE(n)), \
DT_IRQ(SPI_NXP_S32_NODE(n), flags)); \
irq_enable(DT_IRQN(SPI_NXP_S32_NODE(n))); \
}
#define SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n) \
.cb = spi_nxp_s32_##n##_callback,
#define SPI_NXP_S32_CALLBACK_DEFINE(n) \
static void spi_nxp_s32_##n##_callback(uint8 instance, Spi_Ip_EventType event) \
{ \
ARG_UNUSED(instance); \
const struct device *dev = DEVICE_DT_GET(SPI_NXP_S32_NODE(n)); \
\
spi_nxp_s32_transfer_callback(dev, event); \
}
#else
#define SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n)
#define SPI_NXP_S32_INTERRUPT_DEFINE(n)
#define SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n)
#define SPI_NXP_S32_CALLBACK_DEFINE(n)
#endif /*CONFIG_NXP_S32_SPI_INTERRUPT*/
/*
* Declare the default configuration for SPI driver, no DMA
* support, all inner module Chip Selects are active low.
*/
#define SPI_NXP_S32_INSTANCE_CONFIG(n) \
static const Spi_Ip_ConfigType spi_nxp_s32_default_config_##n = { \
.Instance = n, \
.Mcr = (SPI_MCR_MSTR(SPI_NXP_S32_IS_MASTER(n)) | \
SPI_MCR_CONT_SCKE(0U) | SPI_MCR_FRZ(0U) | \
SPI_MCR_MTFE(0U) | SPI_MCR_SMPL_PT(0U) | \
SPI_MCR_PCSIS(BIT_MASK(SPI_NXP_S32_NUM_CS(n))) | \
SPI_MCR_MDIS(0U) | SPI_MCR_XSPI(1U) | SPI_MCR_HALT(1U)), \
.TransferMode = SPI_IP_POLLING, \
.StateIndex = n, \
SPI_NXP_S32_SET_SLAVE(n) \
}
#define SPI_NXP_S32_TRANSFER_CONFIG(n) \
.transfer_cfg = { \
.Instance = n, \
.Ctare = SPI_CTARE_FMSZE(0U) | SPI_CTARE_DTCP(1U), \
}
#define SPI_NXP_S32_DEVICE(n) \
PINCTRL_DT_DEFINE(SPI_NXP_S32_NODE(n)); \
SPI_NXP_S32_CALLBACK_DEFINE(n) \
SPI_NXP_S32_INTERRUPT_DEFINE(n) \
SPI_NXP_S32_INSTANCE_CONFIG(n); \
static const struct spi_nxp_s32_config spi_nxp_s32_config_##n = { \
.instance = n, \
.num_cs = SPI_NXP_S32_NUM_CS(n), \
.clock_frequency = DT_PROP(SPI_NXP_S32_NODE(n), clock_frequency), \
.sck_cs_delay = DT_PROP_OR(SPI_NXP_S32_NODE(n), spi_sck_cs_delay, 0U), \
.cs_sck_delay = DT_PROP_OR(SPI_NXP_S32_NODE(n), spi_cs_sck_delay, 0U), \
.cs_cs_delay = DT_PROP_OR(SPI_NXP_S32_NODE(n), spi_cs_cs_delay, 0U), \
.spi_hw_cfg = (Spi_Ip_ConfigType *)&spi_nxp_s32_default_config_##n, \
.pincfg = PINCTRL_DT_DEV_CONFIG_GET(SPI_NXP_S32_NODE(n)), \
SPI_NXP_S32_CONFIG_CALLBACK_FUNC(n) \
SPI_NXP_S32_CONFIG_INTERRUPT_FUNC(n) \
}; \
static struct spi_nxp_s32_data spi_nxp_s32_data_##n = { \
SPI_NXP_S32_TRANSFER_CONFIG(n), \
SPI_CONTEXT_INIT_LOCK(spi_nxp_s32_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_nxp_s32_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(SPI_NXP_S32_NODE(n), ctx) \
}; \
DEVICE_DT_DEFINE(SPI_NXP_S32_NODE(n), \
&spi_nxp_s32_init, NULL, \
&spi_nxp_s32_data_##n, &spi_nxp_s32_config_##n, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_nxp_s32_driver_api);
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(0), okay)
SPI_NXP_S32_DEVICE(0);
#endif
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(1), okay)
SPI_NXP_S32_DEVICE(1);
#endif
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(2), okay)
SPI_NXP_S32_DEVICE(2);
#endif
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(3), okay)
SPI_NXP_S32_DEVICE(3);
#endif
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(4), okay)
SPI_NXP_S32_DEVICE(4);
#endif
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(5), okay)
SPI_NXP_S32_DEVICE(5);
#endif
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(6), okay)
SPI_NXP_S32_DEVICE(6);
#endif
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(7), okay)
SPI_NXP_S32_DEVICE(7);
#endif
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(8), okay)
SPI_NXP_S32_DEVICE(8);
#endif
#if DT_NODE_HAS_STATUS(SPI_NXP_S32_NODE(9), okay)
SPI_NXP_S32_DEVICE(9);
#endif

66
drivers/spi/spi_nxp_s32.h Normal file
View file

@ -0,0 +1,66 @@
/*
* Copyright 2022 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_DRIVERS_SPI_SPI_NXP_S32_H_
#define ZEPHYR_DRIVERS_SPI_SPI_NXP_S32_H_
#include <zephyr/drivers/spi.h>
#include <zephyr/logging/log.h>
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
LOG_MODULE_REGISTER(spi_nxp_s32);
#include "spi_context.h"
#include <Spi_Ip.h>
#define SPI_NXP_S32_NUM_PRESCALER 4U
#define SPI_NXP_S32_NUM_SCALER 16U
/* Modified SPI transfer format is not supported,
* the maximum baudrate is 25Mhz.
*/
#define SPI_NXP_S32_MIN_FREQ 100000U
#define SPI_NXP_S32_MAX_FREQ 25000000U
#define SPI_NXP_S32_BYTE_PER_FRAME(frame_size) \
(frame_size <= 8U) ? 1U : ((frame_size <= 16U) ? 2U : 4U)
#define SPI_NXP_S32_MAX_BYTES_PER_PACKAGE(bytes_per_frame) \
((UINT16_MAX / bytes_per_frame) * bytes_per_frame)
struct spi_nxp_s32_baudrate_param {
uint8_t scaler;
uint8_t prescaler;
uint32_t frequency;
};
struct spi_nxp_s32_data {
uint8_t bytes_per_frame;
uint32_t transfer_len;
struct spi_context ctx;
Spi_Ip_ExternalDeviceType transfer_cfg;
Spi_Ip_DeviceParamsType transfer_params;
};
struct spi_nxp_s32_config {
uint8_t instance;
uint8_t num_cs;
uint32_t clock_frequency;
uint32_t sck_cs_delay;
uint32_t cs_sck_delay;
uint32_t cs_cs_delay;
Spi_Ip_ConfigType *spi_hw_cfg;
const struct pinctrl_dev_config *pincfg;
#ifdef CONFIG_NXP_S32_SPI_INTERRUPT
Spi_Ip_CallbackType cb;
void (*irq_config_func)(const struct device *dev);
#endif /* CONFIG_NXP_S32_SPI_INTERRUPT */
};
#endif /* ZEPHYR_DRIVERS_SPI_SPI_NXP_S32_H_ */

View file

@ -433,5 +433,105 @@
status = "disabled";
};
};
spi0: spi@40130000 {
compatible = "nxp,s32-spi";
reg = <0x40130000 0x10000>;
interrupts = <GIC_SPI 191 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
spi1: spi@40140000 {
compatible = "nxp,s32-spi";
reg = <0x40140000 0x10000>;
interrupts = <GIC_SPI 192 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
spi2: spi@40930000 {
compatible = "nxp,s32-spi";
reg = <0x40930000 0x10000>;
interrupts = <GIC_SPI 193 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
spi3: spi@40940000 {
compatible = "nxp,s32-spi";
reg = <0x40940000 0x10000>;
interrupts = <GIC_SPI 194 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
spi4: spi@40950000 {
compatible = "nxp,s32-spi";
reg = <0x40950000 0x10000>;
interrupts = <GIC_SPI 195 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
spi5: spi@42130000 {
compatible = "nxp,s32-spi";
reg = <0x42130000 0x10000>;
interrupts = <GIC_SPI 196 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
spi6: spi@42140000 {
compatible = "nxp,s32-spi";
reg = <0x42140000 0x10000>;
interrupts = <GIC_SPI 197 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
spi7: spi@42150000 {
compatible = "nxp,s32-spi";
reg = <0x42150000 0x10000>;
interrupts = <GIC_SPI 198 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
spi8: spi@42930000 {
compatible = "nxp,s32-spi";
reg = <0x42930000 0x10000>;
interrupts = <GIC_SPI 199 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
spi9: spi@42940000 {
compatible = "nxp,s32-spi";
reg = <0x42940000 0x10000>;
interrupts = <GIC_SPI 200 IRQ_TYPE_LEVEL IRQ_DEFAULT_PRIORITY>;
num-cs = <5>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
};
};

View file

@ -0,0 +1,73 @@
# Copyright 2022 NXP
# SPDX-License-Identifier: Apache-2.0
description: NXP S32 SPI controller
compatible: "nxp,s32-spi"
include: [spi-controller.yaml, pinctrl-device.yaml]
properties:
reg:
required: true
interrupts:
required: true
num-cs:
type: int
required: true
description: |
The number of the Chip Select signals.
clock-frequency:
type: int
required: true
description: |
Module clock frequency in Hz.
pinctrl-0:
required: true
pinctrl-names:
required: true
slave:
type: boolean
required: false
description: |
Select if the SPI module is intended to be used in slave mode.
spi-sck-cs-delay:
type: int
required: false
description: |
A delay in nanoseconds between the stop of clock signal and
deactivating Chip Select at the stop of transfer. If CS remains
asserted between transfer, this delay will be inserted between transfer.
If not set, the minimum supported delay is used.
This value will affect to all inner CS signals of SPI module when active.
This value will not be applied for CS lines controlled by GPIO.
spi-cs-sck-delay:
type: int
required: false
description: |
A delay in nanoseconds between activating Chip Select and the start
of clock signal at the start of transfer. If CS remains asserted
between transfer, this delay will be inserted between transfer.
If not set, the minimum supported delay is used.
This value will affect to all inner CS signals of SPI module when active.
This value will not be applied for CS lines controlled by GPIO.
spi-cs-cs-delay:
type: int
required: false
description: |
A delay in nanoseconds between deactivating Chip Select at the stop
of previous transfer and activating Chip Select at the start of
next transfer. If CS remains asserted between transfer, this delay
will not be inserted.
If not set, the minimum supported delay is used.
This value will affect to all inner CS signals of SPI module when active.
This value will not be applied for CS lines controlled by GPIO.