sam: adc: Updated SAM ADC driver.

Updated to work with new ADC API.

Signed-off-by: Justin Watson <jwatson5@gmail.com>
This commit is contained in:
Justin Watson 2018-08-15 15:01:57 -07:00 committed by Anas Nashif
commit 4e551aabb6
6 changed files with 338 additions and 178 deletions

View file

@ -95,10 +95,12 @@
#define CONFIG_ADC_0_IRQ ATMEL_SAM_AFEC_4003C000_IRQ_0
#define CONFIG_ADC_0_IRQ_PRI ATMEL_SAM_AFEC_4003C000_IRQ_0_PRIORITY
#define CONFIG_ADC_0_NAME ATMEL_SAM_AFEC_4003C000_LABEL
#define CONFIG_ADC_0_PERIPHERAL_ID ATMEL_SAM_AFEC_4003C000_PERIPHERAL_ID
#define CONFIG_ADC_1_BASE_ADDRESS ATMEL_SAM_AFEC_40064000_BASE_ADDRESS
#define CONFIG_ADC_1_IRQ ATMEL_SAM_AFEC_40064000_IRQ_0
#define CONFIG_ADC_1_IRQ_PRI ATMEL_SAM_AFEC_40064000_IRQ_0_PRIORITY
#define CONFIG_ADC_1_NAME ATMEL_SAM_AFEC_40064000_LABEL
#define CONFIG_ADC_1_PERIPHERAL_ID ATMEL_SAM_AFEC_40064000_PERIPHERAL_ID
/* End of SoC Level DTS fixup file */

View file

@ -56,6 +56,8 @@ features:
+-----------+------------+-------------------------------------+
| GPIO | on-chip | gpio |
+-----------+------------+-------------------------------------+
| ADC | on-chip | ADC via AFEC |
+-----------+------------+-------------------------------------+
Other hardware features are not currently supported by Zephyr.

View file

@ -7,3 +7,4 @@ toolchain:
- gnuarmemb
supported:
- netif:eth
- adc

View file

@ -1,11 +1,15 @@
/*
* Copyright (c) 2017 comsuisse AG
* Copyright (c) 2018 Justin Watson
*
* SPDX-License-Identifier: Apache-2.0
*/
/** @file
* @brief Atmel SAM MCU family ADC (AFEC) driver.
*
* This is an implementation of the Zephyr ADC driver using the SAM Analog
* Front-End Controller (AFEC) peripheral.
*/
#include <errno.h>
@ -16,143 +20,254 @@
#include <soc.h>
#include <adc.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#define SYS_LOG_DOMAIN "dev/adc_sam_afec"
#define SYS_LOG_LEVEL CONFIG_SYS_LOG_ADC_LEVEL
#include <logging/sys_log.h>
#define ADC_CHANNELS 12
struct adc_sam_dev_cfg {
Afec *regs;
const struct soc_gpio_pin *pin_trigger;
void (*irq_config)(void);
u8_t irq_id;
u8_t periph_id;
};
struct channel_samples {
u16_t *buffer;
u32_t length;
};
struct adc_sam_dev_data {
struct k_sem sem_meas;
struct k_sem mutex_thread;
u16_t active_channels;
u16_t measured_channels;
u16_t active_chan_last;
struct channel_samples samples[ADC_CHANNELS];
};
#define NUM_CHANNELS 12
#define CONF_ADC_PRESCALER ((SOC_ATMEL_SAM_MCK_FREQ_HZ / 15000000) - 1)
#define DEV_NAME(dev) ((dev)->config->name)
typedef void (*cfg_func_t)(struct device *dev);
struct adc_sam_data {
struct adc_context ctx;
struct device *dev;
/* Pointer to the buffer in the sequence. */
u16_t *buffer;
/* Pointer to the beginning of a sample. Consider the number of
* channels in the sequence: this buffer changes by that amount
* so all the channels would get repeated.
*/
u16_t *repeat_buffer;
/* Bit mask of the channels to be sampled. */
u32_t channels;
/* Index of the channel being sampled. */
u8_t channel_id;
};
struct adc_sam_cfg {
Afec *regs;
cfg_func_t cfg_func;
u32_t periph_id;
struct soc_gpio_pin afec_trg_pin;
};
#define DEV_CFG(dev) \
((const struct adc_sam_dev_cfg *const)(dev)->config->config_info)
((const struct adc_sam_cfg *const)(dev)->config->config_info)
#define DEV_DATA(dev) \
((struct adc_sam_dev_data *const)(dev)->driver_data)
((struct adc_sam_data *)(dev)->driver_data)
static void adc_sam_isr(void *arg)
static int adc_sam_channel_setup(struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
struct device *dev = (struct device *)arg;
const struct adc_sam_dev_cfg *const dev_cfg = DEV_CFG(dev);
struct adc_sam_dev_data *const dev_data = DEV_DATA(dev);
Afec *const afec = dev_cfg->regs;
struct channel_samples *samples = dev_data->samples;
u32_t isr_status;
u16_t value;
const struct adc_sam_cfg * const cfg = DEV_CFG(dev);
Afec *const afec = cfg->regs;
isr_status = afec->AFEC_ISR;
for (int i = 0; i < ADC_CHANNELS; i++) {
if (isr_status & BIT(i)) {
/* Channel i has been sampled */
afec->AFEC_CSELR = AFEC_CSELR_CSEL(i);
value = (u16_t)(afec->AFEC_CDR);
u8_t channel_id = channel_cfg->channel_id;
if (samples[i].length > 0) {
/* Save sample */
*samples[i].buffer = value;
samples[i].length--;
samples[i].buffer++;
/* Clear the gain bits for the channel. */
afec->AFEC_CGR &= ~(3 << channel_id * 2);
dev_data->measured_channels |= BIT(i);
}
if (samples[i].length == 0) {
afec->AFEC_CHDR |= BIT(i);
afec->AFEC_IDR |= BIT(i);
dev_data->active_channels &= ~BIT(i);
}
}
switch (channel_cfg->gain) {
case ADC_GAIN_1:
/* A value of 0 in this register is a gain of 1. */
break;
case ADC_GAIN_1_2:
afec->AFEC_CGR |= (1 << (channel_id * 2));
break;
case ADC_GAIN_1_4:
afec->AFEC_CGR |= (2 << (channel_id * 2));
break;
default:
SYS_LOG_ERR("Selected ADC gain is not valid");
return -EINVAL;
}
if (dev_data->active_chan_last == dev_data->measured_channels) {
if (!dev_data->active_channels) {
/* No more conversions needed */
k_sem_give(&dev_data->sem_meas);
} else {
/* Start another conversion with remaining channels */
dev_data->measured_channels = 0;
dev_data->active_chan_last = dev_data->active_channels;
afec->AFEC_CR = AFEC_CR_START;
}
}
}
static int adc_sam_read(struct device *dev, struct adc_seq_table *seq_tbl)
{
const struct adc_sam_dev_cfg *dev_cfg = DEV_CFG(dev);
struct adc_sam_dev_data *const dev_data = DEV_DATA(dev);
Afec *const afec = dev_cfg->regs;
u8_t channel;
u32_t num_samples;
k_sem_take(&dev_data->mutex_thread, K_FOREVER);
dev_data->active_channels = 0;
/* Enable chosen channels */
for (int i = 0; i < seq_tbl->num_entries; i++) {
channel = seq_tbl->entries[i].channel_id;
if (channel >= ADC_CHANNELS) {
return -EINVAL;
}
/* Check and set number of requested samples */
num_samples = seq_tbl->entries[i].buffer_length / sizeof(u16_t);
if (!num_samples) {
return -EINVAL;
}
dev_data->samples[channel].length = num_samples;
/* Set start of sample buffer */
dev_data->samples[channel].buffer =
(u16_t *)seq_tbl->entries[i].buffer;
/* Enable channel */
dev_data->active_channels |= BIT(channel);
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
SYS_LOG_ERR("Selected ADC acquisition time is not valid");
return -EINVAL;
}
/* Enable chosen channels and their interrupts */
afec->AFEC_CHER = dev_data->active_channels;
afec->AFEC_IER = dev_data->active_channels;
if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
SYS_LOG_ERR("Selected reference is not valid");
return -EINVAL;
}
/* Start conversions */
dev_data->measured_channels = 0;
dev_data->active_chan_last = dev_data->active_channels;
afec->AFEC_CR = AFEC_CR_START;
k_sem_take(&dev_data->sem_meas, K_FOREVER);
if (channel_cfg->differential) {
SYS_LOG_ERR("Differential input is not supported");
return -EINVAL;
}
k_sem_give(&dev_data->mutex_thread);
/* Set single ended channels to unsigned and differential channels
* to signed conversions.
*/
afec->AFEC_EMR &= ~(AFEC_EMR_SIGNMODE(
AFEC_EMR_SIGNMODE_SE_UNSG_DF_SIGN_Val));
return 0;
}
static void adc_sam_configure(struct device *dev)
static void adc_sam_start_conversion(struct device *dev)
{
const struct adc_sam_dev_cfg *dev_cfg = DEV_CFG(dev);
Afec *const afec = dev_cfg->regs;
const struct adc_sam_cfg *const cfg = DEV_CFG(dev);
struct adc_sam_data *data = DEV_DATA(dev);
Afec *const afec = cfg->regs;
/* Reset the AFEC */
data->channel_id = find_lsb_set(data->channels) - 1;
SYS_LOG_DBG("Starting channel %d", data->channel_id);
/* Disable all channels. */
afec->AFEC_CHDR = 0xfff;
afec->AFEC_IDR = 0xfff;
/* Enable the ADC channel. This also enables/selects the channel pin as
* an input to the AFEC (50.5.1 SAM E70 datasheet).
*/
afec->AFEC_CHER = (1 << data->channel_id);
/* Enable the interrupt for the channel. */
afec->AFEC_IER = (1 << data->channel_id);
/* Start the conversions. */
afec->AFEC_CR = AFEC_CR_START;
}
/**
* This is only called once at the beginning of all the conversions,
* all channels as a group.
*/
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
data->channels = ctx->sequence->channels;
adc_sam_start_conversion(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int check_buffer_size(const struct adc_sequence *sequence,
u8_t active_channels)
{
size_t needed_buffer_size;
needed_buffer_size = active_channels * sizeof(u16_t);
if (sequence->options) {
needed_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
SYS_LOG_ERR("Provided buffer is too small (%u/%u)",
sequence->buffer_size, needed_buffer_size);
return -ENOMEM;
}
return 0;
}
static int start_read(struct device *dev, const struct adc_sequence *sequence)
{
struct adc_sam_data *data = DEV_DATA(dev);
int error = 0;
u32_t channels = sequence->channels;
data->channels = 0;
/* Signal an error if the channel selection is invalid (no channels or
* a non-existing one is selected).
*/
if (channels == 0 ||
(channels & (~0UL << NUM_CHANNELS))) {
SYS_LOG_ERR("Invalid selection of channels");
return -EINVAL;
}
if (sequence->oversampling != 0) {
SYS_LOG_ERR("Oversampling is not supported");
return -EINVAL;
}
if (sequence->resolution != 12) {
/* TODO JKW: Support the Enhanced Resolution Mode 50.6.3 page
* 1544.
*/
SYS_LOG_ERR("ADC resolution value %d is not valid",
sequence->resolution);
return -EINVAL;
}
if (sequence->options->interval_us != 0) {
SYS_LOG_ERR("Spaced intervals not supported");
return -EINVAL;
}
u8_t num_active_channels = 0;
u8_t channel = 0;
while (channels > 0) {
if (channels & 1) {
++num_active_channels;
}
channels >>= 1;
++channel;
}
error = check_buffer_size(sequence, num_active_channels);
if (error) {
return error;
}
/* In the context you have a pointer to the adc_sam_data structure
* only.
*/
data->buffer = sequence->buffer;
data->repeat_buffer = sequence->buffer;
/* At this point we allow the scheduler to do other things while
* we wait for the conversions to complete. This is provided by the
* adc_context functions. However, the caller of this function is
* blocked until the results are in.
*/
adc_context_start_read(&data->ctx, sequence);
error = adc_context_wait_for_completion(&data->ctx);
adc_context_release(&data->ctx, error);
return error;
}
static int adc_sam_read(struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_sam_data *data = DEV_DATA(dev);
adc_context_lock(&data->ctx, false, NULL);
return start_read(dev, sequence);
}
static int adc_sam_init(struct device *dev)
{
const struct adc_sam_cfg *const cfg = DEV_CFG(dev);
struct adc_sam_data *data = DEV_DATA(dev);
Afec *const afec = cfg->regs;
/* Reset the AFEC. */
afec->AFEC_CR = AFEC_CR_SWRST;
afec->AFEC_MR = AFEC_MR_TRGEN_DIS
@ -164,100 +279,127 @@ static void adc_sam_configure(struct device *dev)
| AFEC_MR_ONE
| AFEC_MR_USEQ_NUM_ORDER;
/* Set all channels CM voltage to Vrefp/2 (512) */
for (int i = 0; i < ADC_CHANNELS; i++) {
/* Set all channels CM voltage to Vrefp/2 (512). */
for (int i = 0; i < NUM_CHANNELS; i++) {
afec->AFEC_CSELR = i;
afec->AFEC_COCR = 512;
}
/* Enable PGA and Current Bias */
/* Enable PGA and Current Bias. */
afec->AFEC_ACR = AFEC_ACR_PGA0EN
| AFEC_ACR_PGA1EN
| AFEC_ACR_IBCTL(1);
}
static int adc_sam_initialize(struct device *dev)
{
const struct adc_sam_dev_cfg *dev_cfg = DEV_CFG(dev);
struct adc_sam_dev_data *const dev_data = DEV_DATA(dev);
soc_pmc_peripheral_enable(cfg->periph_id);
/* Initialize semaphores */
k_sem_init(&dev_data->sem_meas, 0, 1);
k_sem_init(&dev_data->mutex_thread, 1, 1);
cfg->cfg_func(dev);
/* Configure interrupts */
dev_cfg->irq_config();
data->dev = dev;
/* Enable module's clock */
soc_pmc_peripheral_enable(dev_cfg->periph_id);
/* Configure ADC */
adc_sam_configure(dev);
/* Enable module interrupt */
irq_enable(dev_cfg->irq_id);
SYS_LOG_INF("Device %s initialized", DEV_NAME(dev));
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api adc_sam_driver_api = {
.read = adc_sam_read,
#ifdef CONFIG_ADC_ASYNC
static int adc_sam_read_async(struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_sam_data *data = DEV_DATA(dev);
adc_context_lock(&data->ctx, true, async);
return start_read(dev, sequence);
}
#endif
static const struct adc_driver_api adc_sam_api = {
.channel_setup = adc_sam_channel_setup,
.read = adc_sam_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_sam_read_async,
#endif
};
/* ADC_0 */
static void adc_sam_isr(void *arg)
{
struct device *dev = (struct device *)arg;
struct adc_sam_data *data = DEV_DATA(dev);
const struct adc_sam_cfg *const cfg = DEV_CFG(dev);
Afec *const afec = cfg->regs;
u16_t result;
afec->AFEC_CHDR |= BIT(data->channel_id);
afec->AFEC_IDR |= BIT(data->channel_id);
afec->AFEC_CSELR = AFEC_CSELR_CSEL(data->channel_id);
result = (u16_t)(afec->AFEC_CDR);
*data->buffer++ = result;
data->channels &= ~BIT(data->channel_id);
if (data->channels) {
adc_sam_start_conversion(dev);
} else {
/* Called once all conversions have completed.*/
adc_context_on_sampling_done(&data->ctx, dev);
}
}
#ifdef CONFIG_ADC_0
static struct device DEVICE_NAME_GET(adc0_sam);
static void adc0_sam_cfg_func(struct device *dev);
static void adc0_irq_config(void)
{
IRQ_CONNECT(AFEC0_IRQn, CONFIG_ADC_0_IRQ_PRI, adc_sam_isr,
DEVICE_GET(adc0_sam), 0);
}
static const struct soc_gpio_pin pin_adc0 = PIN_AFE0_ADTRG;
static const struct adc_sam_dev_cfg adc0_sam_config = {
.regs = AFEC0,
.pin_trigger = &pin_adc0,
.periph_id = ID_AFEC0,
.irq_config = adc0_irq_config,
.irq_id = AFEC0_IRQn,
static const struct adc_sam_cfg adc0_sam_cfg = {
.regs = (Afec *)CONFIG_ADC_0_BASE_ADDRESS,
.cfg_func = adc0_sam_cfg_func,
.periph_id = CONFIG_ADC_0_PERIPHERAL_ID,
.afec_trg_pin = PIN_AFE0_ADTRG,
};
static struct adc_sam_dev_data adc0_sam_data;
static struct adc_sam_data adc0_sam_data = {
ADC_CONTEXT_INIT_TIMER(adc0_sam_data, ctx),
ADC_CONTEXT_INIT_LOCK(adc0_sam_data, ctx),
ADC_CONTEXT_INIT_SYNC(adc0_sam_data, ctx),
};
DEVICE_AND_API_INIT(adc0_sam, CONFIG_ADC_0_NAME, &adc_sam_initialize,
&adc0_sam_data, &adc0_sam_config, POST_KERNEL,
CONFIG_ADC_INIT_PRIORITY, &adc_sam_driver_api);
#endif
DEVICE_AND_API_INIT(adc0_sam, CONFIG_ADC_0_NAME, adc_sam_init,
&adc0_sam_data, &adc0_sam_cfg, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &adc_sam_api);
/* ADC_1 */
static void adc0_sam_cfg_func(struct device *dev)
{
IRQ_CONNECT(CONFIG_ADC_0_IRQ, CONFIG_ADC_0_IRQ_PRI, adc_sam_isr,
DEVICE_GET(adc0_sam), 0);
irq_enable(CONFIG_ADC_0_IRQ);
}
#endif /* CONFIG_ADC_0 */
#ifdef CONFIG_ADC_1
static struct device DEVICE_NAME_GET(adc1_sam);
static void adc1_sam_cfg_func(struct device *dev);
static void adc1_irq_config(void)
{
IRQ_CONNECT(AFEC1_IRQn, CONFIG_ADC_1_IRQ_PRI, adc_sam_isr,
DEVICE_GET(adc1_sam), 0);
}
static const struct soc_gpio_pin pin_adc1 = PIN_AFE1_ADTRG;
static const struct adc_sam_dev_cfg adc1_sam_config = {
.regs = AFEC1,
.pin_trigger = &pin_adc1,
.periph_id = ID_AFEC1,
.irq_config = adc1_irq_config,
.irq_id = AFEC1_IRQn,
static const struct adc_sam_cfg adc1_sam_cfg = {
.regs = (Afec *)CONFIG_ADC_1_BASE_ADDRESS,
.cfg_func = adc1_sam_cfg_func,
.periph_id = CONFIG_ADC_1_PERIPHERAL_ID,
.afec_trg_pin = PIN_AFE1_ADTRG,
};
static struct adc_sam_dev_data adc1_sam_data;
static struct adc_sam_data adc1_sam_data = {
ADC_CONTEXT_INIT_TIMER(adc1_sam_data, ctx),
ADC_CONTEXT_INIT_LOCK(adc1_sam_data, ctx),
ADC_CONTEXT_INIT_SYNC(adc1_sam_data, ctx),
};
DEVICE_AND_API_INIT(adc1_sam, CONFIG_ADC_1_NAME, &adc_sam_initialize,
&adc1_sam_data, &adc1_sam_config, POST_KERNEL,
CONFIG_ADC_INIT_PRIORITY, &adc_sam_driver_api);
#endif
DEVICE_AND_API_INIT(adc1_sam, CONFIG_ADC_1_NAME, adc_sam_init,
&adc1_sam_data, &adc1_sam_cfg, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &adc_sam_api);
static void adc1_sam_cfg_func(struct device *dev)
{
IRQ_CONNECT(CONFIG_ADC_1_IRQ, CONFIG_ADC_1_IRQ_PRI, adc_sam_isr,
DEVICE_GET(adc1_sam), 0);
irq_enable(CONFIG_ADC_1_IRQ);
}
#endif /* CONFIG_ADC_1 */

View file

@ -0,0 +1,3 @@
CONFIG_ADC=y
CONFIG_ADC_SAM_AFEC=y
CONFIG_ADC_0=y

View file

@ -94,6 +94,16 @@
#define ADC_1ST_CHANNEL_ID 1
#define ADC_1ST_CHANNEL_INPUT 0
#elif defined(CONFIG_BOARD_SAM_E70_XPLAINED)
#define ADC_DEVICE_NAME CONFIG_ADC_0_NAME
#define ADC_RESOLUTION 12
#define ADC_GAIN ADC_GAIN_1
#define ADC_REFERENCE ADC_REF_EXTERNAL0
#define ADC_ACQUISITION_TIME ADC_ACQ_TIME_DEFAULT
#define ADC_1ST_CHANNEL_ID 0
#define ADC_1ST_CHANNEL_INPUT 0
#else
#error "Unsupported board."
#endif