ec_host_cmd: add NPCX SHI peripheral for the host commands

This commit adds the support for host commands being transported
by the Serial Host Interface on the NPCX SoC.

Signed-off-by: Michał Barnaś <mb@semihalf.com>
This commit is contained in:
Michał Barnaś 2022-08-01 18:06:33 +02:00 committed by Carles Cufí
commit 3ae105e76b
9 changed files with 1264 additions and 0 deletions

View file

@ -9,3 +9,8 @@ zephyr_library_sources_ifdef(
zephyr_library_sources_ifdef(
CONFIG_EC_HOST_CMD_PERIPH_ESPI
ec_host_cmd_periph_espi.c)
zephyr_library_sources_ifdef(
CONFIG_EC_HOST_CMD_PERIPH_SHI_NPCX
ec_host_cmd_periph_shi_npcx.c)

View file

@ -35,6 +35,45 @@ config EC_HOST_CMD_PERIPH_ESPI
Enable support for Embedded Controller host commands using
the eSPI bus.
config EC_HOST_CMD_PERIPH_SHI
bool "Host commands support using SHI"
help
Enable support for Embedded Controller host commands using
the Serial Host Interface.
endchoice
if EC_HOST_CMD_PERIPH_SHI
choice EC_HOST_CMD_PERIPH_SHI_DRIVER
prompt "SHI driver"
default EC_HOST_CMD_PERIPH_SHI_NPCX if SOC_FAMILY_NPCX
config EC_HOST_CMD_PERIPH_SHI_NPCX
bool "SHI by Nuvoton"
depends on DT_HAS_NUVOTON_NPCX_SHI_ENABLED
help
This option enables the driver for SHI peripheral in the
Nuvoton NPCX chip.
endchoice
config EC_HOST_CMD_PERIPH_SHI_MAX_REQUEST
int "Max data size for the version 3 request packet"
default 544 if EC_HOST_CMD_PERIPH_SHI_NPCX
help
This option indicates maximum data size for a version 3 request
packet. This must be big enough to handle a request header of host
command, flash write offset/size, and 512 bytes of flash data.
config EC_HOST_CMD_PERIPH_SHI_MAX_RESPONSE
int "Max data size for the version 3 response packet"
default 544 if EC_HOST_CMD_PERIPH_SHI_NPCX
help
This option indicates maximum data size for a version 3 response
packet. This must be big enough to handle a response header of host
command, flash read offset/size, and 512 bytes of flash data.
endif # EC_HOST_CMD_PERIPH_SHI
endif # EC_HOST_CMD_PERIPH

View file

@ -0,0 +1,101 @@
/*
* Copyright (c) 2022 Google LLC
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_DRIVERS_EC_HOST_CMD_PERIPH_SHI_H_
#define ZEPHYR_DRIVERS_EC_HOST_CMD_PERIPH_SHI_H_
#include <zephyr/device.h>
/*
* Byte codes returned by EC over SPI interface.
*
* These can be used by the AP to debug the EC interface, and to determine
* when the EC is not in a state where it will ever get around to responding
* to the AP.
*
* Example of sequence of bytes read from EC for a current good transfer:
* 1. - - AP asserts chip select (CS#)
* 2. EC_SHI_OLD_READY - AP sends first byte(s) of request
* 3. - - EC starts handling CS# interrupt
* 4. EC_SHI_RECEIVING - AP sends remaining byte(s) of request
* 5. EC_SHI_PROCESSING - EC starts processing request; AP is clocking in
* bytes looking for EC_SHI_FRAME_START
* 6. - - EC finishes processing and sets up response
* 7. EC_SHI_FRAME_START - AP reads frame byte
* 8. (response packet) - AP reads response packet
* 9. EC_SHI_PAST_END - Any additional bytes read by AP
* 10 - - AP deasserts chip select
* 11 - - EC processes CS# interrupt and sets up DMA for
* next request
*
* If the AP is waiting for EC_SHI_FRAME_START and sees any value other than
* the following byte values:
* EC_SHI_OLD_READY
* EC_SHI_RX_READY
* EC_SHI_RECEIVING
* EC_SHI_PROCESSING
*
* Then the EC found an error in the request, or was not ready for the request
* and lost data. The AP should give up waiting for EC_SHI_FRAME_START,
* because the EC is unable to tell when the AP is done sending its request.
*/
/*
* Framing byte which precedes a response packet from the EC. After sending a
* request, the AP will clock in bytes until it sees the framing byte, then
* clock in the response packet.
*/
#define EC_SHI_FRAME_START 0xec
/*
* Padding bytes which are clocked out after the end of a response packet.
*/
#define EC_SHI_PAST_END 0xed
/*
* EC is ready to receive, and has ignored the byte sent by the AP. EC expects
* that the AP will send a valid packet header (starting with
* EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
*
* NOTE: Some SPI configurations place the Most Significant Bit on SDO when
* CS goes low. This macro has the Most Significant Bit set to zero,
* so SDO will not be driven high when CS goes low.
*/
#define EC_SHI_RX_READY 0x78
/*
* EC has started receiving the request from the AP, but hasn't started
* processing it yet.
*/
#define EC_SHI_RECEIVING 0xf9
/* EC has received the entire request from the AP and is processing it. */
#define EC_SHI_PROCESSING 0xfa
/*
* EC received bad data from the AP, such as a packet header with an invalid
* length. EC will ignore all data until chip select deasserts.
*/
#define EC_SHI_RX_BAD_DATA 0xfb
/*
* EC received data from the AP before it was ready. That is, the AP asserted
* chip select and started clocking data before the EC was ready to receive it.
* EC will ignore all data until chip select deasserts.
*/
#define EC_SHI_NOT_READY 0xfc
/*
* EC was ready to receive a request from the AP. EC has treated the byte sent
* by the AP as part of a request packet, or (for old-style ECs) is processing
* a fully received packet but is not ready to respond yet.
*/
#define EC_SHI_OLD_READY 0xfd
/* Supported version of host commands protocol. */
#define EC_HOST_REQUEST_VERSION 3
#endif /* ZEPHYR_DRIVERS_EC_HOST_CMD_PERIPH_SHI_H_ */

View file

@ -0,0 +1,976 @@
/*
* Copyright (c) 2022 Google LLC
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nuvoton_npcx_shi
#include "ec_host_cmd_periph_shi.h"
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/ec_host_cmd_periph/ec_host_cmd_periph.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
#include <zephyr/mgmt/ec_host_cmd.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <soc_miwu.h>
BUILD_ASSERT(DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 1, "Invalid number of NPCX SHI peripherals");
LOG_MODULE_REGISTER(host_cmd_shi_npcx, CONFIG_EC_HC_LOG_LEVEL);
/* Driver convenience defines */
#define HAL_INSTANCE(dev) (struct shi_reg *)(((const struct shi_npcx_config *)(dev)->config)->base)
/* Full output buffer size */
#define SHI_OBUF_FULL_SIZE DT_INST_PROP(0, buffer_tx_size)
/* Full input buffer size */
#define SHI_IBUF_FULL_SIZE DT_INST_PROP(0, buffer_rx_size)
/* Configure the IBUFLVL2 = the size of V3 protocol header */
#define SHI_IBUFLVL2_THRESHOLD (sizeof(struct ec_host_cmd_request_header))
/* Half output buffer size */
#define SHI_OBUF_HALF_SIZE (SHI_OBUF_FULL_SIZE / 2)
/* Half input buffer size */
#define SHI_IBUF_HALF_SIZE (SHI_IBUF_FULL_SIZE / 2)
/*
* Timeout to wait for SHI request packet
*
* This affects the slowest SPI clock we can support. A delay of 8192 us permits a 512-byte request
* at 500 KHz, assuming the SPI controller starts sending bytes as soon as it asserts chip select.
* That's as slow as we would practically want to run the SHI interface, since running it slower
* significantly impacts firmware update times.
*/
#define EC_SHI_CMD_RX_TIMEOUT_US 8192
/*
* The AP blindly clocks back bytes over the SPI interface looking for a framing byte.
* So this preamble must always precede the actual response packet.
*/
#define EC_SHI_OUT_PREAMBLE_LENGTH 2
/*
* Space allocation of the past-end status byte (EC_SHI_PAST_END) in the out_msg buffer.
*/
#define EC_SHI_PAST_END_LENGTH 1
/*
* Space allocation of the frame status byte (EC_SHI_FRAME_START) in the out_msg buffer.
*/
#define EC_SHI_FRAME_START_LENGTH 1
/*
* Offset of output parameters needs to account for pad and framing bytes and
* one last past-end byte at the end so any additional bytes clocked out by
* the AP will have a known and identifiable value.
*/
#define EC_SHI_PROTO3_OVERHEAD (EC_SHI_PAST_END_LENGTH + EC_SHI_FRAME_START_LENGTH)
/*
* Our input and output msg buffers. These must be large enough for our largest
* message, including protocol overhead. The pointers after the protocol
* overhead, as passed to the host command handler, must be 32-bit aligned.
*/
#define SHI_OUT_START_PAD (4 * (EC_SHI_FRAME_START_LENGTH / 4 + 1))
#define SHI_OUT_END_PAD (4 * (EC_SHI_PAST_END_LENGTH / 4 + 1))
enum shi_npcx_state {
SHI_STATE_NONE = -1,
/* SHI not enabled (initial state, and when chipset is off) */
SHI_STATE_DISABLED = 0,
/* Ready to receive next request */
SHI_STATE_READY_TO_RECV,
/* Receiving request */
SHI_STATE_RECEIVING,
/* Processing request */
SHI_STATE_PROCESSING,
/* Canceling response since CS deasserted and output NOT_READY byte */
SHI_STATE_CNL_RESP_NOT_RDY,
/* Sending response */
SHI_STATE_SENDING,
/* Received data is invalid */
SHI_STATE_BAD_RECEIVED_DATA,
};
/* Device config */
struct shi_npcx_config {
/* Serial Host Interface (SHI) base address */
uintptr_t base;
/* Clock configuration */
struct npcx_clk_cfg clk_cfg;
/* Pin control configuration */
const struct pinctrl_dev_config *pcfg;
/* Chip-select interrupts */
int irq;
struct npcx_wui shi_cs_wui;
};
struct shi_npcx_data {
/* Handler mutexes */
struct k_sem handler_owns;
struct k_sem dev_owns;
/* Communication status */
enum shi_npcx_state state;
enum shi_npcx_state last_error_state;
uint8_t *rx_msg; /* Entry pointer of msg rx buffer */
uint8_t *tx_msg; /* Entry pointer of msg tx buffer */
volatile uint8_t *rx_buf; /* Entry pointer of receive buffer */
volatile uint8_t *tx_buf; /* Entry pointer of transmit buffer */
uint32_t sz_received; /* Size of received data in bytes */
uint16_t sz_sending; /* Size of sending data in bytes */
uint16_t sz_request; /* Request bytes need to receive */
uint16_t sz_response; /* Response bytes need to receive */
uint64_t rx_deadline; /* Deadline of receiving */
/* Buffers */
uint8_t out_msg_padded[SHI_OUT_START_PAD + CONFIG_EC_HOST_CMD_PERIPH_SHI_MAX_RESPONSE +
SHI_OUT_END_PAD] __aligned(4);
uint8_t *const out_msg;
uint8_t in_msg[CONFIG_EC_HOST_CMD_PERIPH_SHI_MAX_REQUEST] __aligned(4);
};
/* Forward declaration */
static void shi_npcx_reset_prepare(const struct device *dev);
/* Read pointer of input or output buffer by consecutive reading */
static uint32_t shi_npcx_read_buf_pointer(struct shi_reg *const inst)
{
uint8_t stat;
/* Wait for two consecutive equal values read */
do {
stat = inst->IBUFSTAT;
} while (stat != inst->IBUFSTAT);
return (uint32_t)stat;
}
/*
* Valid offset of SHI output buffer to write.
* When SIMUL bit is set, IBUFPTR can be used instead of OBUFPTR
*/
static uint32_t shi_npcx_valid_obuf_offset(struct shi_reg *const inst)
{
return (shi_npcx_read_buf_pointer(inst) + EC_SHI_OUT_PREAMBLE_LENGTH) % SHI_OBUF_FULL_SIZE;
}
/*
* This routine write SHI next half output buffer from msg buffer
*/
static void shi_npcx_write_half_outbuf(const struct device *dev)
{
struct shi_npcx_data *data = dev->data;
const uint32_t size = MIN(SHI_OBUF_HALF_SIZE, data->sz_response - data->sz_sending);
uint8_t *obuf_ptr = (uint8_t *)data->tx_buf;
const uint8_t *obuf_end = obuf_ptr + size;
uint8_t *msg_ptr = data->tx_msg;
/* Fill half output buffer */
while (obuf_ptr != obuf_end) {
*obuf_ptr++ = *msg_ptr++;
}
data->sz_sending += size;
data->tx_buf = obuf_ptr;
data->tx_msg = msg_ptr;
}
/*
* This routine read SHI input buffer to msg buffer until
* we have received a certain number of bytes
*/
static int shi_npcx_read_inbuf_wait(const struct device *dev, uint32_t szbytes)
{
struct shi_npcx_data *data = dev->data;
struct shi_reg *const inst = HAL_INSTANCE(dev);
/* Copy data to msg buffer from input buffer */
for (uint32_t i = 0; i < szbytes; i++, data->sz_received++) {
/*
* If input buffer pointer equals pointer which wants to read,
* it means data is not ready.
*/
while (data->rx_buf == inst->IBUF + shi_npcx_read_buf_pointer(inst)) {
if (k_cycle_get_64() >= data->rx_deadline) {
return 0;
}
}
/* Copy data to msg buffer */
*data->rx_msg++ = *data->rx_buf++;
}
return 1;
}
/* This routine fills out all SHI output buffer with status byte */
static void shi_npcx_fill_out_status(struct shi_reg *const inst, uint8_t status)
{
uint8_t start, end;
volatile uint8_t *fill_ptr;
volatile uint8_t *fill_end;
volatile uint8_t *obuf_end;
/*
* Disable interrupts in case the interfere by the other interrupts.
* Use __disable_irq/__enable_irq instead of using irq_lock/irq_unlock
* here because irq_lock/irq_unlock leave some system exceptions (like
* SVC, NMI, and faults) still enabled.
*/
__disable_irq();
/*
* Fill out output buffer with status byte and leave a gap for PREAMBLE.
* The gap guarantees the synchronization. The critical section should
* be done within this gap. No racing happens.
*/
start = shi_npcx_valid_obuf_offset(inst);
end = (start + SHI_OBUF_FULL_SIZE - EC_SHI_OUT_PREAMBLE_LENGTH) % SHI_OBUF_FULL_SIZE;
fill_ptr = inst->OBUF + start;
fill_end = inst->OBUF + end;
obuf_end = inst->OBUF + SHI_OBUF_FULL_SIZE;
while (fill_ptr != fill_end) {
*fill_ptr++ = status;
if (fill_ptr == obuf_end) {
fill_ptr = inst->OBUF;
}
}
/* End of critical section */
__enable_irq();
}
/* This routine handles shi received unexpected data */
static void shi_npcx_bad_received_data(const struct device *dev)
{
struct shi_npcx_data *data = dev->data;
struct shi_reg *const inst = HAL_INSTANCE(dev);
/* State machine mismatch, timeout, or protocol we can't handle. */
shi_npcx_fill_out_status(inst, EC_SHI_RX_BAD_DATA);
data->state = SHI_STATE_BAD_RECEIVED_DATA;
LOG_ERR("SHI bad data recv");
LOG_DBG("BAD-");
LOG_HEXDUMP_DBG(data->in_msg, data->sz_received, "in_msg=");
/* Reset shi's state machine for error recovery */
shi_npcx_reset_prepare(dev);
LOG_DBG("END");
}
/*
* This routine write SHI output buffer from msg buffer over halt of it.
* It make sure we have enough time to handle next operations.
*/
static void shi_npcx_write_first_pkg_outbuf(const struct device *dev, uint16_t szbytes)
{
struct shi_npcx_data *data = dev->data;
struct shi_reg *const inst = HAL_INSTANCE(dev);
uint8_t size, offset;
volatile uint8_t *obuf_ptr;
volatile uint8_t *obuf_end;
uint8_t *msg_ptr;
uint32_t half_buf_remain; /* Remains in half buffer are free to write */
/* Start writing at our current OBUF position */
offset = shi_npcx_valid_obuf_offset(inst);
obuf_ptr = inst->OBUF + offset;
msg_ptr = data->tx_msg;
/* Fill up to OBUF mid point, or OBUF end */
half_buf_remain = SHI_OBUF_HALF_SIZE - (offset % SHI_OBUF_HALF_SIZE);
size = MIN(half_buf_remain, szbytes - data->sz_sending);
obuf_end = obuf_ptr + size;
while (obuf_ptr != obuf_end) {
*obuf_ptr++ = *msg_ptr++;
}
/* Track bytes sent for later accounting */
data->sz_sending += size;
/* Write data to beginning of OBUF if we've reached the end */
if (obuf_ptr == inst->OBUF + SHI_IBUF_FULL_SIZE) {
obuf_ptr = inst->OBUF;
}
/* Fill next half output buffer */
size = MIN(SHI_OBUF_HALF_SIZE, szbytes - data->sz_sending);
obuf_end = obuf_ptr + size;
while (obuf_ptr != obuf_end) {
*obuf_ptr++ = *msg_ptr++;
}
/* Track bytes sent / last OBUF position written for later accounting */
data->sz_sending += size;
data->tx_buf = obuf_ptr;
data->tx_msg = msg_ptr;
}
static void shi_npcx_handle_host_package(const struct device *dev)
{
struct shi_npcx_data *data = dev->data;
struct shi_reg *const inst = HAL_INSTANCE(dev);
uint32_t sz_inbuf_int = data->sz_request / SHI_IBUF_HALF_SIZE;
uint32_t cnt_inbuf_int = data->sz_received / SHI_IBUF_HALF_SIZE;
if (sz_inbuf_int - cnt_inbuf_int) {
/* Need to receive data from buffer */
return;
}
uint32_t remain_bytes = data->sz_request - data->sz_received;
/* Read remaining bytes from input buffer */
if (!shi_npcx_read_inbuf_wait(dev, remain_bytes)) {
return shi_npcx_bad_received_data(dev);
}
/* Move to processing state */
data->state = SHI_STATE_PROCESSING;
LOG_DBG("PRC-");
/* Fill output buffer to indicate we`re processing request */
shi_npcx_fill_out_status(inst, EC_SHI_PROCESSING);
data->out_msg[0] = EC_SHI_FRAME_START;
/* Wake-up the HC handler thread */
k_sem_give(&data->handler_owns);
}
static int shi_npcx_host_request_expected_size(const struct ec_host_cmd_request_header *r)
{
/* Check host request version */
if (r->prtcl_ver != EC_HOST_REQUEST_VERSION) {
return 0;
}
/* Reserved byte should be 0 */
if (r->reserved) {
return 0;
}
return sizeof(*r) + r->data_len;
}
static void shi_npcx_parse_header(const struct device *dev)
{
struct shi_npcx_data *data = dev->data;
/* We're now inside a transaction */
data->state = SHI_STATE_RECEIVING;
LOG_DBG("RV-");
/* Setup deadline time for receiving */
data->rx_deadline = k_cycle_get_64() + k_us_to_cyc_near64(EC_SHI_CMD_RX_TIMEOUT_US);
/* Wait for version, command, length bytes */
if (!shi_npcx_read_inbuf_wait(dev, 3)) {
return shi_npcx_bad_received_data(dev);
}
if (data->in_msg[0] == EC_HOST_REQUEST_VERSION) {
/* Protocol version 3 */
struct ec_host_cmd_request_header *r =
(struct ec_host_cmd_request_header *)data->in_msg;
int pkt_size;
/*
* If request is over half of input buffer, we need to modify the algorithm again.
*/
__ASSERT_NO_MSG(sizeof(*r) < SHI_IBUF_HALF_SIZE);
/* Wait for the rest of the command header */
if (!shi_npcx_read_inbuf_wait(dev, sizeof(*r) - 3)) {
return shi_npcx_bad_received_data(dev);
}
/* Check how big the packet should be */
pkt_size = shi_npcx_host_request_expected_size(r);
if (pkt_size == 0 || pkt_size > sizeof(data->in_msg)) {
return shi_npcx_bad_received_data(dev);
}
/* Computing total bytes need to receive */
data->sz_request = pkt_size;
shi_npcx_handle_host_package(dev);
} else {
/* Invalid version number */
return shi_npcx_bad_received_data(dev);
}
}
static void shi_npcx_sec_ibf_int_enable(struct shi_reg *const inst, int enable)
{
if (enable) {
/* Setup IBUFLVL2 threshold and enable it */
inst->SHICFG5 |= BIT(NPCX_SHICFG5_IBUFLVL2DIS);
SET_FIELD(inst->SHICFG5, NPCX_SHICFG5_IBUFLVL2, SHI_IBUFLVL2_THRESHOLD);
inst->SHICFG5 &= ~BIT(NPCX_SHICFG5_IBUFLVL2DIS);
/* Enable IBHF2 event */
inst->EVENABLE2 |= BIT(NPCX_EVENABLE2_IBHF2EN);
} else {
/* Disable IBHF2 event first */
inst->EVENABLE2 &= ~BIT(NPCX_EVENABLE2_IBHF2EN);
/* Disable IBUFLVL2 and set threshold back to zero */
inst->SHICFG5 |= BIT(NPCX_SHICFG5_IBUFLVL2DIS);
SET_FIELD(inst->SHICFG5, NPCX_SHICFG5_IBUFLVL2, 0);
}
}
/* This routine copies SHI half input buffer data to msg buffer */
static void shi_npcx_read_half_inbuf(const struct device *dev)
{
struct shi_npcx_data *data = dev->data;
/*
* Copy to read buffer until reaching middle/top address of
* input buffer or completing receiving data
*/
do {
/* Restore data to msg buffer */
*data->rx_msg++ = *data->rx_buf++;
data->sz_received++;
} while (data->sz_received % SHI_IBUF_HALF_SIZE && data->sz_received != data->sz_request);
}
/*
* Avoid spamming the console with prints every IBF / IBHF interrupt, if
* we find ourselves in an unexpected state.
*/
static void shi_npcx_log_unexpected_state(const struct device *dev, char *isr_name)
{
struct shi_npcx_data *data = dev->data;
if (data->state != data->last_error_state) {
LOG_ERR("Unexpected state %d in %s ISR", data->state, isr_name);
}
data->last_error_state = data->state;
}
static void shi_npcx_handle_cs_assert(const struct device *dev)
{
struct shi_reg *const inst = HAL_INSTANCE(dev);
struct shi_npcx_data *data = dev->data;
/* If not enabled, ignore glitches on SHI_CS_L */
if (data->state == SHI_STATE_DISABLED) {
return;
}
/* NOT_READY should be sent and there're no spi transaction now. */
if (data->state == SHI_STATE_CNL_RESP_NOT_RDY) {
return;
}
/* Chip select is low = asserted */
if (data->state != SHI_STATE_READY_TO_RECV) {
/* State machine should be reset in EVSTAT_EOR ISR */
LOG_ERR("Unexpected state %d in CS ISR", data->state);
return;
}
LOG_DBG("CSL-");
/*
* Clear possible EOR event from previous transaction since it's
* irrelevant now that CS is re-asserted.
*/
inst->EVSTAT = BIT(NPCX_EVSTAT_EOR);
}
static void shi_npcx_handle_cs_deassert(const struct device *dev)
{
struct shi_reg *const inst = HAL_INSTANCE(dev);
struct shi_npcx_data *data = dev->data;
/*
* If the buffer is still used by the host command.
* Change state machine for response handler.
*/
if (data->state == SHI_STATE_PROCESSING) {
/*
* Mark not ready to prevent the other
* transaction immediately
*/
shi_npcx_fill_out_status(inst, EC_SHI_NOT_READY);
data->state = SHI_STATE_CNL_RESP_NOT_RDY;
/*
* Disable SHI interrupt, it will remain disabled until shi_send_response_packet()
* is called and CS is asserted for a new transaction.
*/
irq_disable(DT_INST_IRQN(0));
LOG_DBG("CNL-");
return;
/* Next transaction but we're not ready */
} else if (data->state == SHI_STATE_CNL_RESP_NOT_RDY) {
return;
}
/* Error state for checking*/
if (data->state != SHI_STATE_SENDING) {
shi_npcx_log_unexpected_state(dev, "CSNRE");
}
/* reset SHI and prepare to next transaction again */
shi_npcx_reset_prepare(dev);
LOG_DBG("END\n");
}
static void shi_npcx_handle_input_buf_half_full(const struct device *dev)
{
struct shi_reg *const inst = HAL_INSTANCE(dev);
struct shi_npcx_data *data = dev->data;
if (data->state == SHI_STATE_RECEIVING) {
/* Read data from input to msg buffer */
shi_npcx_read_half_inbuf(dev);
return shi_npcx_handle_host_package(dev);
} else if (data->state == SHI_STATE_SENDING) {
/* Write data from msg buffer to output buffer */
if (data->tx_buf == inst->OBUF + SHI_OBUF_FULL_SIZE) {
/* Write data from bottom address again */
data->tx_buf = inst->OBUF;
shi_npcx_write_half_outbuf(dev);
}
} else if (data->state == SHI_STATE_PROCESSING) {
/* Wait for host to handle request */
} else {
/* Unexpected status */
shi_npcx_log_unexpected_state(dev, "IBHF");
}
}
static void shi_npcx_handle_input_buf_full(const struct device *dev)
{
struct shi_npcx_data *data = dev->data;
struct shi_reg *const inst = HAL_INSTANCE(dev);
if (data->state == SHI_STATE_RECEIVING) {
/* read data from input to msg buffer */
shi_npcx_read_half_inbuf(dev);
/* Read to bottom address again */
data->rx_buf = inst->IBUF;
return shi_npcx_handle_host_package(dev);
} else if (data->state == SHI_STATE_SENDING) {
/* Write data from msg buffer to output buffer */
if (data->tx_buf == inst->OBUF + SHI_OBUF_HALF_SIZE) {
shi_npcx_write_half_outbuf(dev);
}
return;
} else if (data->state == SHI_STATE_PROCESSING) {
/* Wait for host to handle request */
return;
}
/* Unexpected status */
shi_npcx_log_unexpected_state(dev, "IBF");
}
static void shi_npcx_isr(const struct device *dev)
{
struct shi_reg *const inst = HAL_INSTANCE(dev);
uint8_t stat;
uint8_t stat2;
/* Read status register and clear interrupt status early */
stat = inst->EVSTAT;
inst->EVSTAT = stat;
stat2 = inst->EVSTAT2;
/* SHI CS pin is asserted in EVSTAT2 */
if (IS_BIT_SET(stat2, NPCX_EVSTAT2_CSNFE)) {
/* Clear pending bit of CSNFE */
inst->EVSTAT2 = BIT(NPCX_EVSTAT2_CSNFE);
LOG_DBG("CSNFE-");
/*
* BUSY bit is set when SHI_CS is asserted. If not, leave it for
* SHI_CS de-asserted event.
*/
if (!IS_BIT_SET(inst->SHICFG2, NPCX_SHICFG2_BUSY)) {
LOG_DBG("CSNB-");
return;
}
shi_npcx_handle_cs_assert(dev);
}
/*
* End of data for read/write transaction. i.e. SHI_CS is deasserted.
* Host completed or aborted transaction
*
* EOR has the limitation that it will not be set even if the SHI_CS is deasserted without
* SPI clocks. The new SHI module introduce the CSNRE bit which will be set when SHI_CS is
* deasserted regardless of SPI clocks.
*/
if (IS_BIT_SET(stat2, NPCX_EVSTAT2_CSNRE)) {
/* Clear pending bit of CSNRE */
inst->EVSTAT2 = BIT(NPCX_EVSTAT2_CSNRE);
/*
* We're not in proper state.
* Mark not ready to abort next transaction
*/
LOG_DBG("CSH-");
return shi_npcx_handle_cs_deassert(dev);
}
/*
* The number of bytes received reaches the size of
* protocol V3 header(=8) after CS asserted.
*/
if (IS_BIT_SET(stat2, NPCX_EVSTAT2_IBHF2)) {
/* Clear IBHF2 */
inst->EVSTAT2 = BIT(NPCX_EVSTAT2_IBHF2);
LOG_DBG("HDR-");
/* Disable second IBF interrupt and start to parse header */
shi_npcx_sec_ibf_int_enable(inst, 0);
shi_npcx_parse_header(dev);
}
/*
* Indicate input/output buffer pointer reaches the half buffer size.
* Transaction is processing.
*/
if (IS_BIT_SET(stat, NPCX_EVSTAT_IBHF)) {
return shi_npcx_handle_input_buf_half_full(dev);
}
/*
* Indicate input/output buffer pointer reaches the full buffer size.
* Transaction is processing.
*/
if (IS_BIT_SET(stat, NPCX_EVSTAT_IBF)) {
return shi_npcx_handle_input_buf_full(dev);
}
}
static void shi_npcx_reset_prepare(const struct device *dev)
{
struct shi_reg *const inst = HAL_INSTANCE(dev);
struct shi_npcx_data *data = dev->data;
uint32_t i;
data->state = SHI_STATE_DISABLED;
irq_disable(DT_INST_IRQN(0));
/* Disable SHI unit to clear all status bits */
inst->SHICFG1 &= ~BIT(NPCX_SHICFG1_EN);
/* Initialize parameters of next transaction */
data->rx_msg = data->in_msg;
data->tx_msg = data->out_msg;
data->rx_buf = inst->IBUF;
data->tx_buf = inst->OBUF;
data->sz_received = 0;
data->sz_sending = 0;
data->sz_request = 0;
data->sz_response = 0;
/*
* Fill output buffer to indicate we`re
* ready to receive next transaction.
*/
for (i = 1; i < SHI_OBUF_FULL_SIZE; i++) {
inst->OBUF[i] = EC_SHI_RECEIVING;
}
inst->OBUF[0] = EC_SHI_RX_READY;
/* SHI/Host Write/input buffer wrap-around enable */
inst->SHICFG1 = BIT(NPCX_SHICFG1_IWRAP) | BIT(NPCX_SHICFG1_WEN) | BIT(NPCX_SHICFG1_EN);
data->state = SHI_STATE_READY_TO_RECV;
data->last_error_state = SHI_STATE_NONE;
shi_npcx_sec_ibf_int_enable(inst, 1);
irq_enable(DT_INST_IRQN(0));
LOG_DBG("RDY-");
}
static int shi_npcx_enable(const struct device *dev)
{
const struct device *clk_dev = DEVICE_DT_GET(NPCX_CLK_CTRL_NODE);
const struct shi_npcx_config *const config = dev->config;
int ret;
ret = clock_control_on(clk_dev, (clock_control_subsys_t *)&config->clk_cfg);
if (ret < 0) {
LOG_ERR("Turn on SHI clock fail %d", ret);
return ret;
}
shi_npcx_reset_prepare(dev);
npcx_miwu_irq_disable(&config->shi_cs_wui);
/* Configure pin control for SHI */
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("shi_npcx pinctrl setup failed (%d)", ret);
return ret;
}
NVIC_ClearPendingIRQ(DT_INST_IRQN(0));
npcx_miwu_irq_enable(&config->shi_cs_wui);
irq_enable(DT_INST_IRQN(0));
return 0;
}
static int shi_npcx_disable(const struct device *dev)
{
const struct device *clk_dev = DEVICE_DT_GET(NPCX_CLK_CTRL_NODE);
const struct shi_npcx_config *const config = dev->config;
struct shi_npcx_data *data = dev->data;
int ret;
data->state = SHI_STATE_DISABLED;
irq_disable(DT_INST_IRQN(0));
npcx_miwu_irq_disable(&config->shi_cs_wui);
/* Configure pin control back to GPIO */
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
if (ret < 0) {
LOG_ERR("KB Raw pinctrl setup failed (%d)", ret);
return ret;
}
ret = clock_control_off(clk_dev, (clock_control_subsys_t *)&config->clk_cfg);
if (ret < 0) {
LOG_ERR("Turn off SHI clock fail %d", ret);
return ret;
}
return 0;
}
static int shi_npcx_init_registers(const struct device *dev)
{
int ret;
const struct shi_npcx_config *const config = dev->config;
struct shi_reg *const inst = HAL_INSTANCE(dev);
const struct device *clk_dev = DEVICE_DT_GET(NPCX_CLK_CTRL_NODE);
/* Turn on shi device clock first */
ret = clock_control_on(clk_dev, (clock_control_subsys_t *)&config->clk_cfg);
if (ret < 0) {
LOG_ERR("Turn on SHI clock fail %d", ret);
return ret;
}
/* If booter doesn't set the host interface type */
if (!NPCX_BOOTER_IS_HIF_TYPE_SET()) {
npcx_host_interface_sel(NPCX_HIF_TYPE_ESPI_SHI);
}
/*
* SHICFG1 (SHI Configuration 1) setting
* [7] - IWRAP = 1: Wrap input buffer to the first address
* [6] - CPOL = 0: Sampling on rising edge and output on falling edge
* [5] - DAS = 0: return STATUS reg data after Status command
* [4] - AUTOBE = 0: Automatically update the OBES bit in STATUS reg
* [3] - AUTIBF = 0: Automatically update the IBFS bit in STATUS reg
* [2] - WEN = 0: Enable host write to input buffer
* [1] - Reserved 0
* [0] - ENABLE = 0: Disable SHI at the beginning
*/
inst->SHICFG1 = BIT(NPCX_SHICFG1_IWRAP);
/*
* SHICFG2 (SHI Configuration 2) setting
* [7] - Reserved 0
* [6] - REEVEN = 0: Restart events are not used
* [5] - Reserved 0
* [4] - REEN = 0: Restart transactions are not used
* [3] - SLWU = 0: Seem-less wake-up is enabled by default
* [2] - ONESHOT= 0: WEN is cleared at the end of a write transaction
* [1] - BUSY = 0: SHI bus is busy 0: idle.
* [0] - SIMUL = 1: Turn on simultaneous Read/Write
*/
inst->SHICFG2 = BIT(NPCX_SHICFG2_SIMUL);
/*
* EVENABLE (Event Enable) setting
* [7] - IBOREN = 0: Input buffer overrun interrupt enable
* [6] - STSREN = 0: status read interrupt disable
* [5] - EOWEN = 0: End-of-Data for Write Transaction Interrupt Enable
* [4] - EOREN = 1: End-of-Data for Read Transaction Interrupt Enable
* [3] - IBHFEN = 1: Input Buffer Half Full Interrupt Enable
* [2] - IBFEN = 1: Input Buffer Full Interrupt Enable
* [1] - OBHEEN = 0: Output Buffer Half Empty Interrupt Enable
* [0] - OBEEN = 0: Output Buffer Empty Interrupt Enable
*/
inst->EVENABLE =
BIT(NPCX_EVENABLE_EOREN) | BIT(NPCX_EVENABLE_IBHFEN) | BIT(NPCX_EVENABLE_IBFEN);
/*
* EVENABLE2 (Event Enable 2) setting
* [2] - CSNFEEN = 1: SHI_CS Falling Edge Interrupt Enable
* [1] - CSNREEN = 1: SHI_CS Rising Edge Interrupt Enable
* [0] - IBHF2EN = 0: Input Buffer Half Full 2 Interrupt Enable
*/
inst->EVENABLE2 = BIT(NPCX_EVENABLE2_CSNREEN) | BIT(NPCX_EVENABLE2_CSNFEEN);
/* Clear SHI events status register */
inst->EVSTAT = 0xff;
npcx_miwu_interrupt_configure(&config->shi_cs_wui, NPCX_MIWU_MODE_EDGE, NPCX_MIWU_TRIG_LOW);
/* SHI interrupt installation */
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), shi_npcx_isr, DEVICE_DT_INST_GET(0),
0);
shi_npcx_enable(dev);
return ret;
}
static int shi_npcx_init_peripheral(const struct device *dev)
{
struct shi_npcx_data *data = dev->data;
/* Allow writing to rx buff at startup and block on reading. */
k_sem_init(&data->handler_owns, 0, 1);
k_sem_init(&data->dev_owns, 1, 1);
return 0;
}
static int shi_npcx_init(const struct device *dev)
{
int ret;
ret = shi_npcx_init_registers(dev);
if (ret) {
return ret;
}
ret = shi_npcx_init_peripheral(dev);
if (ret) {
return ret;
}
pm_device_init_suspended(dev);
return pm_device_runtime_enable(dev);
}
static int shi_npcx_periph_init_context(const struct device *dev,
struct ec_host_cmd_periph_rx_ctx *rx_ctx)
{
struct shi_npcx_data *data = dev->data;
rx_ctx->dev_owns = &data->dev_owns;
rx_ctx->handler_owns = &data->handler_owns;
rx_ctx->buf = data->in_msg;
rx_ctx->len = &data->sz_received;
return 0;
}
static int shi_npcx_periph_send(const struct device *dev,
const struct ec_host_cmd_periph_tx_buf *in_buf)
{
struct shi_npcx_data *data = dev->data;
uint8_t *out_buf = data->out_msg + EC_SHI_FRAME_START_LENGTH;
/*
* Disable interrupts. This routine is not called from interrupt context and buffer
* underrun will likely occur if it is preempted after writing its initial reply byte.
* Also, we must be sure our state doesn't unexpectedly change, in case we're expected
* to take RESP_NOT_RDY actions.
*/
__disable_irq();
memcpy(out_buf, in_buf->buf, in_buf->len);
if (data->state == SHI_STATE_PROCESSING) {
/* Append our past-end byte, which we reserved space for. */
((uint8_t *)out_buf)[in_buf->len] = EC_SHI_PAST_END;
/* Computing sending bytes of response */
data->sz_response = in_buf->len + EC_SHI_PROTO3_OVERHEAD;
/* Start to fill output buffer with msg buffer */
shi_npcx_write_first_pkg_outbuf(dev, data->sz_response);
/* Transmit the reply */
data->state = SHI_STATE_SENDING;
LOG_DBG("SND-");
} else if (data->state == SHI_STATE_CNL_RESP_NOT_RDY) {
/*
* If we're not processing, then the AP has already terminated
* the transaction, and won't be listening for a response.
* Reset state machine for next transaction.
*/
shi_npcx_reset_prepare(dev);
LOG_DBG("END\n");
} else {
LOG_ERR("Unexpected state %d in response handler", data->state);
}
__enable_irq();
return 0;
}
static const struct ec_host_cmd_periph_api ec_host_cmd_api = {
.init = shi_npcx_periph_init_context,
.send = shi_npcx_periph_send,
};
#ifdef CONFIG_PM_DEVICE
static int shi_npcx_pm_cb(const struct device *dev, enum pm_device_action action)
{
int ret = 0;
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:
shi_npcx_disable(dev);
break;
case PM_DEVICE_ACTION_RESUME:
shi_npcx_enable(dev);
break;
default:
ret = -ENOTSUP;
break;
}
return ret;
}
#endif
/* Assume only one peripheral */
PM_DEVICE_DT_INST_DEFINE(0, shi_npcx_pm_cb);
PINCTRL_DT_INST_DEFINE(0);
static const struct shi_npcx_config shi_cfg = {
.base = DT_INST_REG_ADDR(0),
.clk_cfg = NPCX_DT_CLK_CFG_ITEM(0),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
.irq = DT_INST_IRQN(0),
.shi_cs_wui = NPCX_DT_WUI_ITEM_BY_NAME(0, shi_cs_wui),
};
static struct shi_npcx_data shi_data = {
.state = SHI_STATE_DISABLED,
.last_error_state = SHI_STATE_NONE,
.out_msg = shi_data.out_msg_padded + SHI_OUT_START_PAD - EC_SHI_FRAME_START_LENGTH,
};
DEVICE_DT_INST_DEFINE(0, shi_npcx_init, PM_DEVICE_DT_INST_GET(0), &shi_data, &shi_cfg, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, &ec_host_cmd_api);

View file

@ -354,6 +354,16 @@
status = "disabled";
};
shi0: shi@4000f000 {
compatible = "nuvoton,npcx-shi";
reg = <0x4000f000 0x120>;
interrupts = <18 1>;
clocks = <&pcc NPCX_CLOCK_BUS_APB3 NPCX_PWDWN_CTL5 1>;
status = "disabled";
buffer-rx-size = <128>;
buffer-tx-size = <128>;
};
host_sub: lpc@400c1000 {
compatible = "nuvoton,npcx-host-sub";
/* host sub-module register address & size */

View file

@ -0,0 +1,28 @@
# Copyright (c) 2022 Google LLC
# SPDX-License-Identifier: Apache-2.0
description: Nuvoton, NPCX Serial Host Interface (SHI) node
compatible: "nuvoton,npcx-shi"
include: [pinctrl-device.yaml, shi-device.yaml]
properties:
pinctrl-0:
required: true
pinctrl-names:
required: true
clocks:
required: true
description: configurations of device source clock controller
shi-cs-wui:
type: phandle
required: true
description: |
Mapping table between Wake-Up Input (WUI) and SHI_CS signal.
For example the WUI mapping on NPCX7 would be
shi-cs-wui = <&wui_io53>;

View file

@ -0,0 +1,20 @@
# Copyright (c) 2022 Google LLC
# SPDX-License-Identifier: Apache-2.0
include: [base.yaml]
properties:
reg:
required: true
buffer-rx-size:
type: int
required: true
description: |
Size of the internal buffer used for receiving data on the bus.
buffer-tx-size:
type: int
required: true
description: |
Size of the internal buffer used for transmitting data over the bus.

View file

@ -1633,4 +1633,88 @@ struct kbs_reg {
#define KBS_CFG_INDX_RTYTO 2 /* Keyboard Scan Retry Timeout */
#define KBS_CFG_INDX_CNUM 3 /* Keyboard Scan Columns Number */
#define KBS_CFG_INDX_CDIV 4 /* Keyboard Scan Clock Divisor */
/* SHI (Serial Host Interface) registers */
struct shi_reg {
volatile uint8_t reserved1;
/* 0x001: SHI Configuration 1 */
volatile uint8_t SHICFG1;
/* 0x002: SHI Configuration 2 */
volatile uint8_t SHICFG2;
volatile uint8_t reserved2[2];
/* 0x005: Event Enable */
volatile uint8_t EVENABLE;
/* 0x006: Event Status */
volatile uint8_t EVSTAT;
/* 0x007: SHI Capabilities */
volatile uint8_t CAPABILITY;
/* 0x008: Status */
volatile uint8_t STATUS;
volatile uint8_t reserved3;
/* 0x00A: Input Buffer Status */
volatile uint8_t IBUFSTAT;
/* 0x00B: Output Buffer Status */
volatile uint8_t OBUFSTAT;
/* 0x00C: SHI Configuration 3 */
volatile uint8_t SHICFG3;
/* 0x00D: SHI Configuration 4 */
volatile uint8_t SHICFG4;
/* 0x00E: SHI Configuration 5 */
volatile uint8_t SHICFG5;
/* 0x00F: Event Status 2 */
volatile uint8_t EVSTAT2;
/* 0x010: Event Enable 2 */
volatile uint8_t EVENABLE2;
volatile uint8_t reserved4[15];
/* 0x20~0x9F: Output Buffer */
volatile uint8_t OBUF[128];
/* 0xA0~0x11F: Input Buffer */
volatile uint8_t IBUF[128];
};
/* SHI register fields */
#define NPCX_SHICFG1_EN 0
#define NPCX_SHICFG1_MODE 1
#define NPCX_SHICFG1_WEN 2
#define NPCX_SHICFG1_AUTIBF 3
#define NPCX_SHICFG1_AUTOBE 4
#define NPCX_SHICFG1_DAS 5
#define NPCX_SHICFG1_CPOL 6
#define NPCX_SHICFG1_IWRAP 7
#define NPCX_SHICFG2_SIMUL 0
#define NPCX_SHICFG2_BUSY 1
#define NPCX_SHICFG2_ONESHOT 2
#define NPCX_SHICFG2_SLWU 3
#define NPCX_SHICFG2_REEN 4
#define NPCX_SHICFG2_RESTART 5
#define NPCX_SHICFG2_REEVEN 6
#define NPCX_EVENABLE_OBEEN 0
#define NPCX_EVENABLE_OBHEEN 1
#define NPCX_EVENABLE_IBFEN 2
#define NPCX_EVENABLE_IBHFEN 3
#define NPCX_EVENABLE_EOREN 4
#define NPCX_EVENABLE_EOWEN 5
#define NPCX_EVENABLE_STSREN 6
#define NPCX_EVENABLE_IBOREN 7
#define NPCX_EVSTAT_OBE 0
#define NPCX_EVSTAT_OBHE 1
#define NPCX_EVSTAT_IBF 2
#define NPCX_EVSTAT_IBHF 3
#define NPCX_EVSTAT_EOR 4
#define NPCX_EVSTAT_EOW 5
#define NPCX_EVSTAT_STSR 6
#define NPCX_EVSTAT_IBOR 7
#define NPCX_STATUS_OBES 6
#define NPCX_STATUS_IBFS 7
#define NPCX_SHICFG3_OBUFLVLDIS 7
#define NPCX_SHICFG4_IBUFLVLDIS 7
#define NPCX_SHICFG5_IBUFLVL2 FIELD(0, 6)
#define NPCX_SHICFG5_IBUFLVL2DIS 7
#define NPCX_EVSTAT2_IBHF2 0
#define NPCX_EVSTAT2_CSNRE 1
#define NPCX_EVSTAT2_CSNFE 2
#define NPCX_EVENABLE2_IBHF2EN 0
#define NPCX_EVENABLE2_CSNREEN 1
#define NPCX_EVENABLE2_CSNFEEN 2
#endif /* _NUVOTON_NPCX_REG_DEF_H */

View file

@ -21,6 +21,7 @@ config EC_HOST_CMD_HANDLER_STACK_SIZE
config EC_HOST_CMD_HANDLER_TX_BUFFER
int "Buffer size in bytes for TX buffer shared by all EC host commands"
default EC_HOST_CMD_PERIPH_SHI_MAX_RESPONSE if EC_HOST_CMD_PERIPH_SHI
default 256
config EC_HOST_CMD_HANDLER_PRIO