tests: lib: cmsis_dsp: matrix: Update Unary F32 tests for 1.9.0

This commit updates the matrix Unary F32 test patterns and
implementations for the CMSIS-DSP 1.9.0.

Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
This commit is contained in:
Stephanos Ioannidis 2021-08-21 03:16:54 +09:00 committed by Carles Cufí
commit 389cf75f00
2 changed files with 9711 additions and 1847 deletions

View file

@ -1,6 +1,6 @@
/*
* Copyright (c) 2020 Stephanos Ioannidis <root@stephanos.io>
* Copyright (C) 2010-2020 ARM Limited or its affiliates. All rights reserved.
* Copyright (c) 2021 Stephanos Ioannidis <root@stephanos.io>
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -14,21 +14,26 @@
#include "unary_f32.pat"
#define SNR_ERROR_THRESH ((float32_t)120)
#define REL_ERROR_THRESH (1.0e-6)
#define REL_ERROR_THRESH (1.0e-5)
#define ABS_ERROR_THRESH (1.0e-5)
#define SNR_ERROR_THRESH_INV ((float32_t)70)
#define SNR_ERROR_THRESH_INV ((float32_t)67)
#define REL_ERROR_THRESH_INV (1.0e-3)
#define ABS_ERROR_THRESH_INV (1.0e-3)
#define SNR_ERROR_THRESH_CHOL ((float32_t)92)
#define REL_ERROR_THRESH_CHOL (1.0e-5)
#define ABS_ERROR_THRESH_CHOL (5.0e-4)
#define NUM_MATRICES (ARRAY_SIZE(in_dims) / 2)
#define NUM_MATRICES_INV ARRAY_SIZE(in_inv_dims)
#define MAX_MATRIX_DIM (40)
#define OP2_ADD (0)
#define OP2_SUB (1)
#define OP1_SCALE (0)
#define OP1_TRANS (1)
#define OP2V_VEC_MULT (0)
#define OP1C_CMPLX_TRANS (0)
static void test_op2(int op, const uint32_t *ref, size_t length)
{
@ -36,6 +41,7 @@ static void test_op2(int op, const uint32_t *ref, size_t length)
uint16_t *dims = (uint16_t *)in_dims;
float32_t *tmp1, *tmp2, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f32 mat_in1;
arm_matrix_instance_f32 mat_in2;
@ -75,15 +81,21 @@ static void test_op2(int op, const uint32_t *ref, size_t length)
/* Run test function */
switch (op) {
case OP2_ADD:
arm_mat_add_f32(&mat_in1, &mat_in2, &mat_out);
status = arm_mat_add_f32(&mat_in1, &mat_in2,
&mat_out);
break;
case OP2_SUB:
arm_mat_sub_f32(&mat_in1, &mat_in2, &mat_out);
status = arm_mat_sub_f32(&mat_in1, &mat_in2,
&mat_out);
break;
default:
zassert_unreachable("invalid operation");
}
/* Validate status */
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment output pointer */
mat_out.pData += (rows * columns);
}
@ -117,6 +129,7 @@ static void test_op1(int op, const uint32_t *ref, size_t length,
uint16_t *dims = (uint16_t *)in_dims;
float32_t *tmp1, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f32 mat_in1;
arm_matrix_instance_f32 mat_out;
@ -150,15 +163,19 @@ static void test_op1(int op, const uint32_t *ref, size_t length,
/* Run test function */
switch (op) {
case OP1_SCALE:
arm_mat_scale_f32(&mat_in1, 0.5f, &mat_out);
status = arm_mat_scale_f32(&mat_in1, 0.5f, &mat_out);
break;
case OP1_TRANS:
arm_mat_trans_f32(&mat_in1, &mat_out);
status = arm_mat_trans_f32(&mat_in1, &mat_out);
break;
default:
zassert_unreachable("invalid operation");
}
/* Validate status */
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment output pointer */
mat_out.pData += (rows * columns);
}
@ -209,7 +226,7 @@ static void test_arm_mat_inverse_f32(void)
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < NUM_MATRICES_INV; index++) {
for (index = 0; index < ARRAY_SIZE(in_inv_dims); index++) {
rows = columns = *dims++;
/* Initialise matrix dimensions */
@ -247,6 +264,373 @@ static void test_arm_mat_inverse_f32(void)
free(output);
}
static void test_op2v(int op, const uint32_t *ref, size_t length)
{
size_t index;
const uint16_t *dims = in_dims;
float32_t *tmp1, *vec, *output_buf, *output;
uint16_t rows, internal;
arm_matrix_instance_f32 mat_in1;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float32_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
vec = malloc(2 * MAX_MATRIX_DIM * sizeof(float32_t));
zassert_not_null(vec, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output_buf = malloc(length * sizeof(float32_t));
zassert_not_null(output_buf, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
mat_in1.pData = tmp1;
output = output_buf;
/* Iterate matrices */
for (index = 0; index < NUM_MATRICES; index++) {
rows = *dims++;
internal = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = rows;
mat_in1.numCols = internal;
/* Load matrix data */
memcpy(mat_in1.pData, in_com1,
2 * rows * internal * sizeof(float32_t));
memcpy(vec, in_vec1, 2 * internal * sizeof(float32_t));
/* Run test function */
switch (op) {
case OP2V_VEC_MULT:
arm_mat_vec_mult_f32(&mat_in1, vec, output);
break;
default:
zassert_unreachable("invalid operation");
}
/* Increment output pointer */
output += rows;
}
/* Validate output */
zassert_true(
test_snr_error_f32(length, output_buf, (float32_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f32(length, output_buf, (float32_t *)ref,
ABS_ERROR_THRESH, REL_ERROR_THRESH),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(vec);
free(output_buf);
}
DEFINE_TEST_VARIANT3(op2v, arm_mat_vec_mult_f32, OP2V_VEC_MULT,
ref_vec_mult, ARRAY_SIZE(ref_vec_mult));
static void test_op1c(int op, const uint32_t *ref, size_t length, bool transpose)
{
size_t index;
const uint16_t *dims = in_dims;
float32_t *tmp1, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f32 mat_in1;
arm_matrix_instance_f32 mat_out;
/* Allocate buffers */
tmp1 = malloc(2 * MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float32_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = malloc(2 * length * sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
mat_in1.pData = tmp1;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < NUM_MATRICES; index++) {
rows = *dims++;
columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = rows;
mat_in1.numCols = columns;
mat_out.numRows = transpose ? columns : rows;
mat_out.numCols = transpose ? rows : columns;
/* Load matrix data */
memcpy(mat_in1.pData,
in_cmplx1, 2 * rows * columns * sizeof(float32_t));
/* Run test function */
switch (op) {
case OP1C_CMPLX_TRANS:
status = arm_mat_cmplx_trans_f32(&mat_in1, &mat_out);
break;
default:
zassert_unreachable("invalid operation");
}
/* Validate status */
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment output pointer */
mat_out.pData += 2 * (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f32(2 * length, output, (float32_t *)ref,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f32(2 * length, output, (float32_t *)ref,
ABS_ERROR_THRESH, REL_ERROR_THRESH),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(output);
}
DEFINE_TEST_VARIANT4(op1c, arm_mat_cmplx_trans_f32, OP1C_CMPLX_TRANS,
ref_cmplx_trans, ARRAY_SIZE(ref_cmplx_trans) / 2, true);
static void test_arm_mat_cholesky_f32(void)
{
size_t index;
size_t length = ARRAY_SIZE(ref_cholesky_dpo);
const uint16_t *dims = in_cholesky_dpo_dims;
float32_t *input, *tmp1, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f32 mat_in1;
arm_matrix_instance_f32 mat_out;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float32_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = calloc(length, sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
input = (float32_t *)in_cholesky_dpo;
mat_in1.pData = tmp1;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < ARRAY_SIZE(in_cholesky_dpo_dims); index++) {
rows = columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = mat_out.numRows = rows;
mat_in1.numCols = mat_out.numCols = columns;
/* Load matrix data */
memcpy(mat_in1.pData,
input, rows * columns * sizeof(float32_t));
/* Run test function */
status = arm_mat_cholesky_f32(&mat_in1, &mat_out);
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment pointers */
input += (rows * columns);
mat_out.pData += (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f32(length, output, (float32_t *)ref_cholesky_dpo,
SNR_ERROR_THRESH_CHOL),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f32(length, output, (float32_t *)ref_cholesky_dpo,
ABS_ERROR_THRESH_CHOL, REL_ERROR_THRESH_CHOL),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(output);
}
static void test_arm_mat_solve_upper_triangular_f32(void)
{
size_t index;
size_t length = ARRAY_SIZE(ref_uptriangular_dpo);
const uint16_t *dims = in_cholesky_dpo_dims;
float32_t *input1, *input2, *tmp1, *tmp2, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f32 mat_in1;
arm_matrix_instance_f32 mat_in2;
arm_matrix_instance_f32 mat_out;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float32_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
tmp2 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float32_t));
zassert_not_null(tmp2, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = calloc(length, sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
input1 = (float32_t *)in_uptriangular_dpo;
input2 = (float32_t *)in_rnda_dpo;
mat_in1.pData = tmp1;
mat_in2.pData = tmp2;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < ARRAY_SIZE(in_cholesky_dpo_dims); index++) {
rows = columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = mat_in2.numRows = mat_out.numRows = rows;
mat_in1.numCols = mat_in2.numCols = mat_out.numCols = columns;
/* Load matrix data */
memcpy(mat_in1.pData, input1,
rows * columns * sizeof(float32_t));
memcpy(mat_in2.pData, input2,
rows * columns * sizeof(float32_t));
/* Run test function */
status = arm_mat_solve_upper_triangular_f32(&mat_in1, &mat_in2,
&mat_out);
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment output pointer */
input1 += (rows * columns);
input2 += (rows * columns);
mat_out.pData += (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f32(length, output,
(float32_t *)ref_uptriangular_dpo,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f32(length, output,
(float32_t *)ref_uptriangular_dpo,
ABS_ERROR_THRESH, REL_ERROR_THRESH),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(tmp2);
free(output);
}
static void test_arm_mat_solve_lower_triangular_f32(void)
{
size_t index;
size_t length = ARRAY_SIZE(ref_lotriangular_dpo);
const uint16_t *dims = in_cholesky_dpo_dims;
float32_t *input1, *input2, *tmp1, *tmp2, *output;
uint16_t rows, columns;
arm_status status;
arm_matrix_instance_f32 mat_in1;
arm_matrix_instance_f32 mat_in2;
arm_matrix_instance_f32 mat_out;
/* Allocate buffers */
tmp1 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float32_t));
zassert_not_null(tmp1, ASSERT_MSG_BUFFER_ALLOC_FAILED);
tmp2 = malloc(MAX_MATRIX_DIM * MAX_MATRIX_DIM * sizeof(float32_t));
zassert_not_null(tmp2, ASSERT_MSG_BUFFER_ALLOC_FAILED);
output = calloc(length, sizeof(float32_t));
zassert_not_null(output, ASSERT_MSG_BUFFER_ALLOC_FAILED);
/* Initialise contexts */
input1 = (float32_t *)in_lotriangular_dpo;
input2 = (float32_t *)in_rnda_dpo;
mat_in1.pData = tmp1;
mat_in2.pData = tmp2;
mat_out.pData = output;
/* Iterate matrices */
for (index = 0; index < ARRAY_SIZE(in_cholesky_dpo_dims); index++) {
rows = columns = *dims++;
/* Initialise matrix dimensions */
mat_in1.numRows = mat_in2.numRows = mat_out.numRows = rows;
mat_in1.numCols = mat_in2.numCols = mat_out.numCols = columns;
/* Load matrix data */
memcpy(mat_in1.pData, input1,
rows * columns * sizeof(float32_t));
memcpy(mat_in2.pData, input2,
rows * columns * sizeof(float32_t));
/* Run test function */
status = arm_mat_solve_lower_triangular_f32(&mat_in1, &mat_in2,
&mat_out);
zassert_equal(status, ARM_MATH_SUCCESS,
ASSERT_MSG_INCORRECT_COMP_RESULT);
/* Increment output pointer */
input1 += (rows * columns);
input2 += (rows * columns);
mat_out.pData += (rows * columns);
}
/* Validate output */
zassert_true(
test_snr_error_f32(length, output,
(float32_t *)ref_lotriangular_dpo,
SNR_ERROR_THRESH),
ASSERT_MSG_SNR_LIMIT_EXCEED);
zassert_true(
test_close_error_f32(length, output,
(float32_t *)ref_lotriangular_dpo,
ABS_ERROR_THRESH, REL_ERROR_THRESH),
ASSERT_MSG_ERROR_LIMIT_EXCEED);
/* Free buffers */
free(tmp1);
free(tmp2);
free(output);
}
/*
* NOTE: arm_mat_ldlt_f32 tests are not implemented for now because they
* require on-device test pattern generation which defeats the purpose
* of on-device testing. Add these tests when the upstream testsuite is
* updated to use pre-generated test patterns.
*/
void test_matrix_unary_f32(void)
{
ztest_test_suite(matrix_unary_f32,
@ -254,7 +638,12 @@ void test_matrix_unary_f32(void)
ztest_unit_test(test_op2_arm_mat_sub_f32),
ztest_unit_test(test_op1_arm_mat_scale_f32),
ztest_unit_test(test_op1_arm_mat_trans_f32),
ztest_unit_test(test_arm_mat_inverse_f32)
ztest_unit_test(test_arm_mat_inverse_f32),
ztest_unit_test(test_op2v_arm_mat_vec_mult_f32),
ztest_unit_test(test_op1c_arm_mat_cmplx_trans_f32),
ztest_unit_test(test_arm_mat_cholesky_f32),
ztest_unit_test(test_arm_mat_solve_upper_triangular_f32),
ztest_unit_test(test_arm_mat_solve_lower_triangular_f32)
);
ztest_run_test_suite(matrix_unary_f32);

File diff suppressed because it is too large Load diff