pm: policy: change the policy event handling
Some events needs to be handled with a very low latency constraint. If the system is in deep sleep, exit latency from this low level state exceeds sometimes the maximum latency constraint of these events. Before suspending the system, select which events is happening sooner, kernel events or normal events. CPU will be up just before the next event occurs taking into account the exit latency of the current power state Change also the policy event API to take as argument absolute time in HW cycles instead of time in us Signed-off-by: Riadh Ghaddab <rghaddab@baylibre.com>
This commit is contained in:
parent
8233b70ece
commit
12a437c4c9
4 changed files with 91 additions and 37 deletions
|
@ -188,6 +188,8 @@ void pm_policy_latency_changed_unsubscribe(struct pm_policy_latency_subscription
|
|||
* will wake up the system at a known time in the future. By registering such
|
||||
* event, the policy manager will be able to decide whether certain power states
|
||||
* are worth entering or not.
|
||||
* CPU is woken up before the time passed in cycle to prevent the event handling
|
||||
* latency
|
||||
*
|
||||
* @note It is mandatory to unregister events once they have happened by using
|
||||
* pm_policy_event_unregister(). Not doing so is an API contract violation,
|
||||
|
@ -195,21 +197,21 @@ void pm_policy_latency_changed_unsubscribe(struct pm_policy_latency_subscription
|
|||
* *far* future, that is, after the cycle counter rollover.
|
||||
*
|
||||
* @param evt Event.
|
||||
* @param time_us When the event will occur, in microseconds from now.
|
||||
* @param cycle When the event will occur, in absolute time (cycles).
|
||||
*
|
||||
* @see pm_policy_event_unregister
|
||||
*/
|
||||
void pm_policy_event_register(struct pm_policy_event *evt, uint32_t time_us);
|
||||
void pm_policy_event_register(struct pm_policy_event *evt, uint32_t cycle);
|
||||
|
||||
/**
|
||||
* @brief Update an event.
|
||||
*
|
||||
* @param evt Event.
|
||||
* @param time_us When the event will occur, in microseconds from now.
|
||||
* @param cycle When the event will occur, in absolute time (cycles).
|
||||
*
|
||||
* @see pm_policy_event_register
|
||||
*/
|
||||
void pm_policy_event_update(struct pm_policy_event *evt, uint32_t time_us);
|
||||
void pm_policy_event_update(struct pm_policy_event *evt, uint32_t cycle);
|
||||
|
||||
/**
|
||||
* @brief Unregister an event.
|
||||
|
@ -246,6 +248,14 @@ void pm_policy_device_power_lock_get(const struct device *dev);
|
|||
*/
|
||||
void pm_policy_device_power_lock_put(const struct device *dev);
|
||||
|
||||
/**
|
||||
* @brief Returns the ticks until the next event
|
||||
*
|
||||
* If an event is registred, it will return the number of ticks until the next event as
|
||||
* a positive or zero value. Otherwise it returns -1
|
||||
*/
|
||||
int32_t pm_policy_next_event_ticks(void);
|
||||
|
||||
#else
|
||||
static inline void pm_policy_state_lock_get(enum pm_state state, uint8_t substate_id)
|
||||
{
|
||||
|
@ -287,18 +297,16 @@ static inline void pm_policy_latency_request_remove(
|
|||
ARG_UNUSED(req);
|
||||
}
|
||||
|
||||
static inline void pm_policy_event_register(struct pm_policy_event *evt,
|
||||
uint32_t time_us)
|
||||
static inline void pm_policy_event_register(struct pm_policy_event *evt, uint32_t cycle)
|
||||
{
|
||||
ARG_UNUSED(evt);
|
||||
ARG_UNUSED(time_us);
|
||||
ARG_UNUSED(cycle);
|
||||
}
|
||||
|
||||
static inline void pm_policy_event_update(struct pm_policy_event *evt,
|
||||
uint32_t time_us)
|
||||
static inline void pm_policy_event_update(struct pm_policy_event *evt, uint32_t cycle)
|
||||
{
|
||||
ARG_UNUSED(evt);
|
||||
ARG_UNUSED(time_us);
|
||||
ARG_UNUSED(cycle);
|
||||
}
|
||||
|
||||
static inline void pm_policy_event_unregister(struct pm_policy_event *evt)
|
||||
|
@ -316,6 +324,11 @@ static inline void pm_policy_device_power_lock_put(const struct device *dev)
|
|||
ARG_UNUSED(dev);
|
||||
}
|
||||
|
||||
static inline int32_t pm_policy_next_event_ticks(void)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
#endif /* CONFIG_PM */
|
||||
|
||||
/**
|
||||
|
|
|
@ -68,6 +68,29 @@ static inline void pm_state_notify(bool entering_state)
|
|||
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
|
||||
}
|
||||
|
||||
static inline int32_t ticks_expiring_sooner(int32_t ticks1, int32_t ticks2)
|
||||
{
|
||||
/*
|
||||
* Ticks are relative numbers that defines the number of ticks
|
||||
* until the next event.
|
||||
* Its maximum value is K_TICKS_FOREVER ((uint32_t)-1) which is -1
|
||||
* when we cast it to (int32_t)
|
||||
* We need to find out which one is the closest
|
||||
*/
|
||||
|
||||
__ASSERT(ticks1 >= -1, "ticks1 has unexpected negative value");
|
||||
__ASSERT(ticks2 >= -1, "ticks2 has unexpected negative value");
|
||||
|
||||
if (ticks1 == K_TICKS_FOREVER) {
|
||||
return ticks2;
|
||||
}
|
||||
if (ticks2 == K_TICKS_FOREVER) {
|
||||
return ticks1;
|
||||
}
|
||||
/* At this step ticks1 and ticks2 are positive */
|
||||
return MIN(ticks1, ticks2);
|
||||
}
|
||||
|
||||
void pm_system_resume(void)
|
||||
{
|
||||
uint8_t id = _current_cpu->id;
|
||||
|
@ -117,12 +140,20 @@ bool pm_state_force(uint8_t cpu, const struct pm_state_info *info)
|
|||
return true;
|
||||
}
|
||||
|
||||
bool pm_system_suspend(int32_t ticks)
|
||||
bool pm_system_suspend(int32_t kernel_ticks)
|
||||
{
|
||||
uint8_t id = _current_cpu->id;
|
||||
k_spinlock_key_t key;
|
||||
int32_t ticks, events_ticks;
|
||||
|
||||
SYS_PORT_TRACING_FUNC_ENTER(pm, system_suspend, ticks);
|
||||
SYS_PORT_TRACING_FUNC_ENTER(pm, system_suspend, kernel_ticks);
|
||||
|
||||
/*
|
||||
* CPU needs to be fully wake up before the event is triggered.
|
||||
* We need to find out first the ticks to the next event
|
||||
*/
|
||||
events_ticks = pm_policy_next_event_ticks();
|
||||
ticks = ticks_expiring_sooner(kernel_ticks, events_ticks);
|
||||
|
||||
key = k_spin_lock(&pm_forced_state_lock);
|
||||
if (z_cpus_pm_forced_state[id].state != PM_STATE_ACTIVE) {
|
||||
|
|
|
@ -143,8 +143,8 @@ static sys_slist_t latency_subs;
|
|||
static struct k_spinlock events_lock;
|
||||
/** List of events. */
|
||||
static sys_slist_t events_list;
|
||||
/** Next event, in absolute cycles (<0: none, [0, UINT32_MAX]: cycles) */
|
||||
static int64_t next_event_cyc = -1;
|
||||
/** Pointer to Next Event. */
|
||||
static struct pm_policy_event *next_event;
|
||||
|
||||
/** @brief Update maximum allowed latency. */
|
||||
static void update_max_latency(void)
|
||||
|
@ -182,6 +182,9 @@ static void update_next_event(uint32_t cyc)
|
|||
int64_t new_next_event_cyc = -1;
|
||||
struct pm_policy_event *evt;
|
||||
|
||||
/* unset the next event pointer */
|
||||
next_event = NULL;
|
||||
|
||||
SYS_SLIST_FOR_EACH_CONTAINER(&events_list, evt, node) {
|
||||
uint64_t cyc_evt = evt->value_cyc;
|
||||
|
||||
|
@ -199,18 +202,26 @@ static void update_next_event(uint32_t cyc)
|
|||
cyc_evt += (uint64_t)UINT32_MAX + 1U;
|
||||
}
|
||||
|
||||
if ((new_next_event_cyc < 0) ||
|
||||
(cyc_evt < new_next_event_cyc)) {
|
||||
if ((new_next_event_cyc < 0) || (cyc_evt < new_next_event_cyc)) {
|
||||
new_next_event_cyc = cyc_evt;
|
||||
next_event = evt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* undo padding for events in the [0, cyc) range */
|
||||
if (new_next_event_cyc > UINT32_MAX) {
|
||||
new_next_event_cyc -= (uint64_t)UINT32_MAX + 1U;
|
||||
int32_t pm_policy_next_event_ticks(void)
|
||||
{
|
||||
int32_t cyc_evt = -1;
|
||||
|
||||
if ((next_event) && (next_event->value_cyc > 0)) {
|
||||
cyc_evt = next_event->value_cyc - k_cycle_get_32();
|
||||
cyc_evt = MAX(0, cyc_evt);
|
||||
BUILD_ASSERT(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC >= CONFIG_SYS_CLOCK_TICKS_PER_SEC,
|
||||
"HW Cycles per sec should be greater that ticks per sec");
|
||||
return k_cyc_to_ticks_floor32(cyc_evt);
|
||||
}
|
||||
|
||||
next_event_cyc = new_next_event_cyc;
|
||||
return -1;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PM_POLICY_DEFAULT
|
||||
|
@ -232,12 +243,12 @@ const struct pm_state_info *pm_policy_next_state(uint8_t cpu, int32_t ticks)
|
|||
|
||||
num_cpu_states = pm_state_cpu_get_all(cpu, &cpu_states);
|
||||
|
||||
if (next_event_cyc >= 0) {
|
||||
if ((next_event) && (next_event->value_cyc >= 0)) {
|
||||
uint32_t cyc_curr = k_cycle_get_32();
|
||||
int64_t cyc_evt = next_event_cyc - cyc_curr;
|
||||
int64_t cyc_evt = next_event->value_cyc - cyc_curr;
|
||||
|
||||
/* event happening after cycle counter max value, pad */
|
||||
if (next_event_cyc <= cyc_curr) {
|
||||
if (next_event->value_cyc <= cyc_curr) {
|
||||
cyc_evt += UINT32_MAX;
|
||||
}
|
||||
|
||||
|
@ -392,13 +403,12 @@ void pm_policy_event_register(struct pm_policy_event *evt, uint32_t time_us)
|
|||
k_spin_unlock(&events_lock, key);
|
||||
}
|
||||
|
||||
void pm_policy_event_update(struct pm_policy_event *evt, uint32_t time_us)
|
||||
void pm_policy_event_update(struct pm_policy_event *evt, uint32_t cycle)
|
||||
{
|
||||
k_spinlock_key_t key = k_spin_lock(&events_lock);
|
||||
uint32_t cyc = k_cycle_get_32();
|
||||
|
||||
evt->value_cyc = cyc + k_us_to_cyc_ceil32(time_us);
|
||||
update_next_event(cyc);
|
||||
evt->value_cyc = cycle;
|
||||
update_next_event(k_cycle_get_32());
|
||||
|
||||
k_spin_unlock(&events_lock, key);
|
||||
}
|
||||
|
|
|
@ -312,7 +312,7 @@ ZTEST(policy_api, test_pm_policy_events)
|
|||
const struct pm_state_info *next;
|
||||
uint32_t now;
|
||||
|
||||
now = k_cyc_to_us_ceil32(k_cycle_get_32());
|
||||
now = k_cyc_to_ticks_ceil32(k_cycle_get_32());
|
||||
|
||||
/* events:
|
||||
* - 10ms from now (time < runtime idle latency)
|
||||
|
@ -323,21 +323,21 @@ ZTEST(policy_api, test_pm_policy_events)
|
|||
*
|
||||
* first event wins, so we must stay active
|
||||
*/
|
||||
pm_policy_event_register(&evt1, 10000);
|
||||
pm_policy_event_register(&evt2, 200000);
|
||||
next = pm_policy_next_state(0U, now + k_us_to_ticks_floor32(2000000));
|
||||
pm_policy_event_register(&evt1, k_ms_to_cyc_floor32(10) + k_cycle_get_32());
|
||||
pm_policy_event_register(&evt2, k_ms_to_cyc_floor32(200) + k_cycle_get_32());
|
||||
next = pm_policy_next_state(0U, now + k_sec_to_ticks_floor32(2));
|
||||
zassert_is_null(next);
|
||||
|
||||
/* remove first event so second event now wins, meaning we can now enter
|
||||
* runtime idle
|
||||
*/
|
||||
pm_policy_event_unregister(&evt1);
|
||||
next = pm_policy_next_state(0U, now + k_us_to_ticks_floor32(2000000));
|
||||
next = pm_policy_next_state(0U, now + k_sec_to_ticks_floor32(2));
|
||||
zassert_equal(next->state, PM_STATE_RUNTIME_IDLE);
|
||||
|
||||
/* remove second event, now we can enter deepest state */
|
||||
pm_policy_event_unregister(&evt2);
|
||||
next = pm_policy_next_state(0U, now + k_us_to_ticks_floor32(2000000));
|
||||
next = pm_policy_next_state(0U, now + k_sec_to_ticks_floor32(2));
|
||||
zassert_equal(next->state, PM_STATE_SUSPEND_TO_RAM);
|
||||
|
||||
/* events:
|
||||
|
@ -348,15 +348,15 @@ ZTEST(policy_api, test_pm_policy_events)
|
|||
*
|
||||
* system wakeup wins, so we can go up to runtime idle.
|
||||
*/
|
||||
pm_policy_event_register(&evt1, 2000000);
|
||||
next = pm_policy_next_state(0U, now + k_us_to_ticks_floor32(200000));
|
||||
pm_policy_event_register(&evt1, k_sec_to_cyc_floor32(2) + k_cycle_get_32());
|
||||
next = pm_policy_next_state(0U, now + k_ms_to_ticks_floor32(200));
|
||||
zassert_equal(next->state, PM_STATE_RUNTIME_IDLE);
|
||||
|
||||
/* modify event to occur in 10ms, so it now wins system wakeup and
|
||||
* requires to stay awake
|
||||
*/
|
||||
pm_policy_event_update(&evt1, 10000);
|
||||
next = pm_policy_next_state(0U, now + k_us_to_ticks_floor32(200000));
|
||||
pm_policy_event_update(&evt1, k_ms_to_cyc_floor32(10) + k_cycle_get_32());
|
||||
next = pm_policy_next_state(0U, now + k_ms_to_ticks_floor32(200));
|
||||
zassert_is_null(next);
|
||||
|
||||
pm_policy_event_unregister(&evt1);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue