soc: intel_adsp: tools: merge cavstool.py and acetool.py code

Merge codebases of cavstool.py and acetool.py as the two have
a lot of duplicated code.

To ease with transition, keep acetool.py around with implementation
imported from cavstool.py. This will help to keep any automated
testing flows working that assume both tools exist.

Signed-off-by: Kai Vehmanen <kai.vehmanen@linux.intel.com>
This commit is contained in:
Kai Vehmanen 2024-05-15 13:40:57 +03:00 committed by Johan Hedberg
commit 0ca7ef78bc
2 changed files with 227 additions and 751 deletions

View file

@ -2,728 +2,11 @@
# Copyright(c) 2022 Intel Corporation. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
import os
import sys
import struct
import logging
import asyncio
import time
import subprocess
import ctypes
import mmap
import argparse
start_output = True
logging.basicConfig(level=logging.INFO)
log = logging.getLogger("ace-fw")
PAGESZ = 4096
HUGEPAGESZ = 2 * 1024 * 1024
HUGEPAGE_FILE = "/dev/hugepages/ace-fw-dma.tmp."
# SRAM windows. Each appears in a 128k region starting at 512k.
#
# Window 0 is the FW_STATUS area, and 4k after that the IPC "outbox"
# Window 1 is the IPC "inbox" (host-writable memory, just 384 bytes currently)
# Window 2 is unused by this script
# Window 3 is winstream-formatted log output
WINDOW_BASE = 0x180000
WINDOW_STRIDE = 0x8000
OUTBOX_OFFSET = (512 + (0 * 128)) * 1024 + 4096
INBOX_OFFSET = (512 + (1 * 128)) * 1024
WINSTREAM_OFFSET = WINDOW_BASE + WINDOW_STRIDE*3
# pylint: disable=duplicate-code
# ADSPCS bits
CRST = 0
CSTALL = 8
SPA = 16
CPA = 24
class HDAStream:
# creates an hda stream with at 2 buffers of buf_len
def __init__(self, stream_id: int):
self.stream_id = stream_id
self.base = hdamem + 0x0080 + (stream_id * 0x20)
log.info(f"Mapping registers for hda stream {self.stream_id} at base {self.base:x}")
self.hda = Regs(hdamem)
self.hda.GCAP = 0x0000
self.hda.GCTL = 0x0008
self.hda.DPLBASE = 0x0070
self.hda.DPUBASE = 0x0074
self.hda.SPBFCH = 0x0700
self.hda.SPBFCTL = 0x0704
self.hda.PPCH = 0x0800
self.hda.PPCTL = 0x0804
self.hda.PPSTS = 0x0808
self.hda.SPIB = 0x0708 + stream_id*0x08
self.hda.freeze()
self.regs = Regs(self.base)
self.regs.CTL = 0x00
self.regs.STS = 0x03
self.regs.LPIB = 0x04
self.regs.CBL = 0x08
self.regs.LVI = 0x0c
self.regs.FIFOW = 0x0e
self.regs.FIFOS = 0x10
self.regs.FMT = 0x12
self.regs.FIFOL= 0x14
self.regs.BDPL = 0x18
self.regs.BDPU = 0x1c
self.regs.freeze()
self.dbg0 = Regs(hdamem + 0x0084 + (0x20*stream_id))
self.dbg0.DPIB = 0x00
self.dbg0.EFIFOS = 0x10
self.dbg0.freeze()
self.reset()
def __del__(self):
self.reset()
def config(self, buf_len: int):
log.info(f"Configuring stream {self.stream_id}")
self.buf_len = buf_len
log.info("Allocating huge page and setting up buffers")
self.mem, self.hugef, self.buf_list_addr, self.pos_buf_addr, self.n_bufs = self.setup_buf(buf_len)
log.info("Setting buffer list, length, and stream id and traffic priority bit")
self.regs.CTL = ((self.stream_id & 0xFF) << 20) | (1 << 18) # must be set to something other than 0?
self.regs.BDPU = (self.buf_list_addr >> 32) & 0xffffffff
self.regs.BDPL = self.buf_list_addr & 0xffffffff
self.regs.CBL = buf_len
self.regs.LVI = self.n_bufs - 1
self.mem.seek(0)
self.debug()
log.info(f"Configured stream {self.stream_id}")
def write(self, data):
bufl = min(len(data), self.buf_len)
log.info(f"Writing data to stream {self.stream_id}, len {bufl}, SPBFCTL {self.hda.SPBFCTL:x}, SPIB {self.hda.SPIB}")
self.mem[0:bufl] = data[0:bufl]
self.mem[bufl:bufl+bufl] = data[0:bufl]
self.hda.SPBFCTL |= (1 << self.stream_id)
self.hda.SPIB += bufl
log.info(f"Wrote data to stream {self.stream_id}, SPBFCTL {self.hda.SPBFCTL:x}, SPIB {self.hda.SPIB}")
def start(self):
log.info(f"Starting stream {self.stream_id}, CTL {self.regs.CTL:x}")
self.regs.CTL |= 2
log.info(f"Started stream {self.stream_id}, CTL {self.regs.CTL:x}")
def stop(self):
log.info(f"Stopping stream {self.stream_id}, CTL {self.regs.CTL:x}")
self.regs.CTL &= 2
time.sleep(0.1)
self.regs.CTL |= 1
log.info(f"Stopped stream {self.stream_id}, CTL {self.regs.CTL:x}")
def setup_buf(self, buf_len: int):
(mem, phys_addr, hugef) = map_phys_mem(self.stream_id)
log.info(f"Mapped 2M huge page at 0x{phys_addr:x} for buf size ({buf_len})")
# create two buffers in the page of buf_len and mark them
# in a buffer descriptor list for the hardware to use
buf0_len = buf_len
buf1_len = buf_len
bdl_off = buf0_len + buf1_len
# bdl is 2 (64bits, 16 bytes) per entry, we have two
mem[bdl_off:bdl_off + 32] = struct.pack("<QQQQ",
phys_addr,
buf0_len,
phys_addr + buf0_len,
buf1_len)
dpib_off = bdl_off+32
# ensure buffer is initialized, sanity
for i in range(0, buf_len*2):
mem[i] = 0
log.info("Filled the buffer descriptor list (BDL) for DMA.")
return (mem, hugef, phys_addr + bdl_off, phys_addr+dpib_off, 2)
def debug(self):
log.debug("HDA %d: PPROC %d, CTL 0x%x, LPIB 0x%x, BDPU 0x%x, BDPL 0x%x, CBL 0x%x, LVI 0x%x",
self.stream_id, (hda.PPCTL >> self.stream_id) & 1, self.regs.CTL, self.regs.LPIB, self.regs.BDPU,
self.regs.BDPL, self.regs.CBL, self.regs.LVI)
log.debug(" FIFOW %d, FIFOS %d, FMT %x, FIFOL %d, DPIB %d, EFIFOS %d",
self.regs.FIFOW & 0x7, self.regs.FIFOS, self.regs.FMT, self.regs.FIFOL, self.dbg0.DPIB, self.dbg0.EFIFOS)
log.debug(" status: FIFORDY %d, DESE %d, FIFOE %d, BCIS %d",
(self.regs.STS >> 5) & 1, (self.regs.STS >> 4) & 1, (self.regs.STS >> 3) & 1, (self.regs.STS >> 2) & 1)
def reset(self):
# Turn DMA off and reset the stream. Clearing START first is a
# noop per the spec, but absolutely required for stability.
# Apparently the reset doesn't stop the stream, and the next load
# starts before it's ready and kills the load (and often the DSP).
# The sleep too is required, on at least one board (a fast
# chromebook) putting the two writes next each other also hangs
# the DSP!
log.info(f"Resetting stream {self.stream_id}")
self.debug()
self.regs.CTL &= ~2 # clear START
time.sleep(0.1)
# set enter reset bit
self.regs.CTL = 1
while (self.regs.CTL & 1) == 0: pass
# clear enter reset bit to exit reset
self.regs.CTL = 0
while (self.regs.CTL & 1) == 1: pass
log.info(f"Disable SPIB and set position 0 of stream {self.stream_id}")
self.hda.SPBFCTL = 0
self.hda.SPIB = 0
#log.info("Setting dma position buffer and enable it")
#self.hda.DPUBASE = self.pos_buf_addr >> 32 & 0xffffffff
#self.hda.DPLBASE = self.pos_buf_addr & 0xfffffff0 | 1
log.info(f"Enabling dsp capture (PROCEN) of stream {self.stream_id}")
self.hda.PPCTL |= (1 << self.stream_id)
self.debug()
log.info(f"Reset stream {self.stream_id}")
def map_regs():
p = runx(f"grep -iEl 'PCI_CLASS=40(10|38)0' /sys/bus/pci/devices/*/uevent")
pcidir = os.path.dirname(p)
# Platform/quirk detection. ID lists cribbed from the SOF kernel driver
did = int(open(f"{pcidir}/device").read().rstrip(), 16)
ace15 = did in [ 0x7e28 ]
ace20 = did in [ 0xa828 ]
if ace15:
log.info("Detected MTL hardware")
elif ace20:
log.info("Detected LNL hardware")
# Check sysfs for a loaded driver and remove it
if os.path.exists(f"{pcidir}/driver"):
mod = os.path.basename(os.readlink(f"{pcidir}/driver/module"))
found_msg = f"Existing driver \"{mod}\" found"
if args.log_only:
log.info(found_msg)
else:
log.warning(found_msg + ", unloading module")
runx(f"rmmod -f {mod}")
# Disengage runtime power management so the kernel doesn't put it to sleep
log.info(f"Forcing {pcidir}/power/control to always 'on'")
with open(f"{pcidir}/power/control", "w") as ctrl:
ctrl.write("on")
# Make sure PCI memory space access and busmastering are enabled.
# Also disable interrupts so as not to confuse the kernel.
with open(f"{pcidir}/config", "wb+") as cfg:
cfg.seek(4)
cfg.write(b'\x06\x04')
# Standard HD Audio Registers
global hdamem
(hdamem, _) = bar_map(pcidir, 0)
hda = Regs(hdamem)
hda.GCAP = 0x0000
hda.GCTL = 0x0008
hda.SPBFCTL = 0x0704
hda.PPCTL = 0x0804
# Find the ID of the first output stream
hda_ostream_id = (hda.GCAP >> 8) & 0x0f # number of input streams
log.info(f"Selected output stream {hda_ostream_id} (GCAP = 0x{hda.GCAP:x})")
hda.SD_SPIB = 0x0708 + (8 * hda_ostream_id)
hda.freeze()
# Standard HD Audio Stream Descriptor
sd = Regs(hdamem + 0x0080 + (hda_ostream_id * 0x20))
sd.CTL = 0x00
sd.CBL = 0x08
sd.LVI = 0x0c
sd.BDPL = 0x18
sd.BDPU = 0x1c
sd.freeze()
# Intel ACE Audio DSP Registers
global bar4_mmap
(bar4_mem, bar4_mmap) = bar_map(pcidir, 4)
dsp = Regs(bar4_mem)
dsp.HFDSSCS = 0x1000
dsp.HFPWRCTL = 0x1d18
dsp.HFPWRSTS = 0x1d1c
dsp.DSP2CXCTL_PRIMARY = 0x178d04
dsp.HFIPCXTDR = 0x73200
dsp.HFIPCXTDA = 0x73204
dsp.HFIPCXIDR = 0x73210
dsp.HFIPCXIDA = 0x73214
dsp.HFIPCXCTL = 0x73228
dsp.HFIPCXTDDY = 0x73300
dsp.HFIPCXIDDY = 0x73380
dsp.SRAM_FW_STATUS = WINDOW_BASE
dsp.freeze()
return (hda, sd, dsp, hda_ostream_id)
def setup_dma_mem(fw_bytes):
(mem, phys_addr, _) = map_phys_mem(hda_ostream_id)
mem[0:len(fw_bytes)] = fw_bytes
log.info("Mapped 2M huge page at 0x%x to contain %d bytes of firmware"
% (phys_addr, len(fw_bytes)))
# HDA requires at least two buffers be defined, but we don't care about
# boundaries because it's all a contiguous region. Place a vestigial
# 128-byte (minimum size and alignment) buffer after the main one, and put
# the 4-entry BDL list into the final 128 bytes of the page.
buf0_len = HUGEPAGESZ - 2 * 128
buf1_len = 128
bdl_off = buf0_len + buf1_len
mem[bdl_off:bdl_off + 32] = struct.pack("<QQQQ",
phys_addr, buf0_len,
phys_addr + buf0_len, buf1_len)
log.info("Filled the buffer descriptor list (BDL) for DMA.")
return (phys_addr + bdl_off, 2)
global_mmaps = [] # protect mmap mappings from garbage collection!
# Maps 2M of contiguous memory using a single page from hugetlbfs,
# then locates its physical address for use as a DMA buffer.
def map_phys_mem(stream_id):
# Make sure hugetlbfs is mounted (not there on chromeos)
os.system("mount | grep -q hugetlbfs ||"
+ " (mkdir -p /dev/hugepages; "
+ " mount -t hugetlbfs hugetlbfs /dev/hugepages)")
# Ensure the kernel has enough budget for one new page
free = int(runx("awk '/HugePages_Free/ {print $2}' /proc/meminfo"))
if free == 0:
tot = 1 + int(runx("awk '/HugePages_Total/ {print $2}' /proc/meminfo"))
os.system(f"echo {tot} > /proc/sys/vm/nr_hugepages")
hugef_name = HUGEPAGE_FILE + str(stream_id)
hugef = open(hugef_name, "w+")
hugef.truncate(HUGEPAGESZ)
mem = mmap.mmap(hugef.fileno(), HUGEPAGESZ)
log.info("type of mem is %s", str(type(mem)))
global_mmaps.append(mem)
os.unlink(hugef_name)
# Find the local process address of the mapping, then use that to extract
# the physical address from the kernel's pagemap interface. The physical
# page frame number occupies the bottom bits of the entry.
mem[0] = 0 # Fault the page in so it has an address!
vaddr = ctypes.addressof(ctypes.c_int.from_buffer(mem))
vpagenum = vaddr >> 12
pagemap = open("/proc/self/pagemap", "rb")
pagemap.seek(vpagenum * 8)
pent = pagemap.read(8)
paddr = (struct.unpack("Q", pent)[0] & ((1 << 55) - 1)) * PAGESZ
pagemap.close()
return (mem, paddr, hugef)
# Maps a PCI BAR and returns the in-process address
def bar_map(pcidir, barnum):
f = open(pcidir + "/resource" + str(barnum), "r+")
mm = mmap.mmap(f.fileno(), os.fstat(f.fileno()).st_size)
global_mmaps.append(mm)
log.info("Mapped PCI bar %d of length %d bytes."
% (barnum, os.fstat(f.fileno()).st_size))
return (ctypes.addressof(ctypes.c_int.from_buffer(mm)), mm)
# Syntactic sugar to make register block definition & use look nice.
# Instantiate from a base address, assign offsets to (uint32) named registers as
# fields, call freeze(), then the field acts as a direct alias for the register!
class Regs:
def __init__(self, base_addr):
vars(self)["base_addr"] = base_addr
vars(self)["ptrs"] = {}
vars(self)["frozen"] = False
def freeze(self):
vars(self)["frozen"] = True
def __setattr__(self, name, val):
if not self.frozen and name not in self.ptrs:
addr = self.base_addr + val
self.ptrs[name] = ctypes.c_uint32.from_address(addr)
else:
self.ptrs[name].value = val
def __getattr__(self, name):
return self.ptrs[name].value
def runx(cmd):
return subprocess.check_output(cmd, shell=True).decode().rstrip()
def load_firmware(fw_file):
try:
fw_bytes = open(fw_file, "rb").read()
# Resize fw_bytes for MTL
if len(fw_bytes) < 512 * 1024:
fw_bytes += b'\x00' * (512 * 1024 - len(fw_bytes))
except Exception as e:
log.error(f"Could not read firmware file: `{fw_file}'")
log.error(e)
sys.exit(1)
(magic, sz) = struct.unpack("4sI", fw_bytes[0:8])
if magic == b'$AE1':
log.info(f"Trimming {sz} bytes of extended manifest")
fw_bytes = fw_bytes[sz:len(fw_bytes)]
# This actually means "enable access to BAR4 registers"!
hda.PPCTL |= (1 << 30) # GPROCEN, "global processing enable"
log.info("Resetting HDA device")
hda.GCTL = 0
while hda.GCTL & 1: pass
hda.GCTL = 1
while not hda.GCTL & 1: pass
log.info("Turning of DSP subsystem")
dsp.HFDSSCS &= ~(1 << 16) # clear SPA bit
time.sleep(0.002)
# wait for CPA bit clear
while dsp.HFDSSCS & (1 << 24):
log.info("Waiting for DSP subsystem power off")
time.sleep(0.1)
log.info("Turning on DSP subsystem")
dsp.HFDSSCS |= (1 << 16) # set SPA bit
time.sleep(0.002) # needed as the CPA bit may be unstable
# wait for CPA bit
while not dsp.HFDSSCS & (1 << 24):
log.info("Waiting for DSP subsystem power on")
time.sleep(0.1)
log.info("Turning on Domain0")
dsp.HFPWRCTL |= 0x1 # set SPA bit
time.sleep(0.002) # needed as the CPA bit may be unstable
# wait for CPA bit
while not dsp.HFPWRSTS & 0x1:
log.info("Waiting for DSP domain0 power on")
time.sleep(0.1)
log.info("Turning off Primary Core")
dsp.DSP2CXCTL_PRIMARY &= ~(0x1) # clear SPA
time.sleep(0.002) # wait for CPA settlement
while dsp.DSP2CXCTL_PRIMARY & (1 << 8):
log.info("Waiting for DSP primary core power off")
time.sleep(0.1)
log.info(f"Configuring HDA stream {hda_ostream_id} to transfer firmware image")
(buf_list_addr, num_bufs) = setup_dma_mem(fw_bytes)
sd.CTL = 1
while (sd.CTL & 1) == 0: pass
sd.CTL = 0
while (sd.CTL & 1) == 1: pass
sd.CTL |= (1 << 20) # Set stream ID to anything non-zero
sd.BDPU = (buf_list_addr >> 32) & 0xffffffff
sd.BDPL = buf_list_addr & 0xffffffff
sd.CBL = len(fw_bytes)
sd.LVI = num_bufs - 1
hda.PPCTL |= (1 << hda_ostream_id)
# SPIB ("Software Position In Buffer") is an Intel HDA extension
# that puts a transfer boundary into the stream beyond which the
# other side will not read. The ROM wants to poll on a "buffer
# full" bit on the other side that only works with this enabled.
hda.SPBFCTL |= (1 << hda_ostream_id)
hda.SD_SPIB = len(fw_bytes)
# Send the DSP an IPC message to tell the device how to boot.
# Note: with cAVS 1.8+ the ROM receives the stream argument as an
# index within the array of output streams (and we always use the
# first one by construction). But with 1.5 it's the HDA index,
# and depends on the number of input streams on the device.
stream_idx = 0
ipcval = ( (1 << 31) # BUSY bit
| (0x01 << 24) # type = PURGE_FW
| (1 << 14) # purge_fw = 1
| (stream_idx << 9)) # dma_id
log.info(f"Sending IPC command, HFIPCXIDR = 0x{ipcval:x}")
dsp.HFIPCXIDR = ipcval
log.info("Turning on Primary Core")
dsp.DSP2CXCTL_PRIMARY |= 0x1 # clear SPA
time.sleep(0.002) # wait for CPA settlement
while not dsp.DSP2CXCTL_PRIMARY & (1 << 8):
log.info("Waiting for DSP primary core power on")
time.sleep(0.1)
log.info("Waiting for IPC acceptance")
while dsp.HFIPCXIDR & (1 << 31):
log.info("Waiting for IPC busy bit clear")
time.sleep(0.1)
log.info("ACK IPC")
dsp.HFIPCXIDA |= (1 << 31)
log.info(f"Starting DMA, FW_STATUS = 0x{dsp.SRAM_FW_STATUS:x}")
sd.CTL |= 2 # START flag
wait_fw_entered()
# Turn DMA off and reset the stream. Clearing START first is a
# noop per the spec, but absolutely required for stability.
# Apparently the reset doesn't stop the stream, and the next load
# starts before it's ready and kills the load (and often the DSP).
# The sleep too is required, on at least one board (a fast
# chromebook) putting the two writes next each other also hangs
# the DSP!
sd.CTL &= ~2 # clear START
time.sleep(0.1)
sd.CTL |= 1
log.info(f"cAVS firmware load complete")
def fw_is_alive():
return dsp.SRAM_FW_STATUS & ((1 << 28) - 1) == 5 # "FW_ENTERED"
def wait_fw_entered(timeout_s=2):
log.info("Waiting %s for firmware handoff, FW_STATUS = 0x%x",
"forever" if timeout_s is None else f"{timeout_s} seconds",
dsp.SRAM_FW_STATUS)
hertz = 100
attempts = None if timeout_s is None else timeout_s * hertz
while True:
alive = fw_is_alive()
if alive:
break
if attempts is not None:
attempts -= 1
if attempts < 0:
break
time.sleep(1 / hertz)
if not alive:
log.warning("Load failed? FW_STATUS = 0x%x", dsp.SRAM_FW_STATUS)
else:
log.info("FW alive, FW_STATUS = 0x%x", dsp.SRAM_FW_STATUS)
# This SHOULD be just "mem[start:start+length]", but slicing an mmap
# array seems to be unreliable on one of my machines (python 3.6.9 on
# Ubuntu 18.04). Read out bytes individually.
def win_read(start, length):
try:
return b''.join(bar4_mmap[WINSTREAM_OFFSET + x].to_bytes(1, 'little')
for x in range(start, start + length))
except IndexError as ie:
# A FW in a bad state may cause winstream garbage
log.error("IndexError in bar4_mmap[%d + %d]", WINSTREAM_OFFSET, start)
log.error("bar4_mmap.size()=%d", bar4_mmap.size())
raise ie
def win_hdr():
return struct.unpack("<IIII", win_read(0, 16))
# Python implementation of the same algorithm in sys_winstream_read(),
# see there for details.
def winstream_read(last_seq):
while True:
(wlen, start, end, seq) = win_hdr()
if last_seq == 0:
last_seq = seq if args.no_history else (seq - ((end - start) % wlen))
if seq == last_seq or start == end:
return (seq, "")
behind = seq - last_seq
if behind > ((end - start) % wlen):
return (seq, "")
copy = (end - behind) % wlen
suffix = min(behind, wlen - copy)
result = win_read(16 + copy, suffix)
if suffix < behind:
result += win_read(16, behind - suffix)
(wlen, start1, end, seq1) = win_hdr()
if start1 == start and seq1 == seq:
# Best effort attempt at decoding, replacing unusable characters
# Found to be useful when it really goes wrong
return (seq, result.decode("utf-8", "replace"))
async def ipc_delay_done():
await asyncio.sleep(0.1)
dsp.HFIPCXTDA = ~(1<<31) & dsp.HFIPCXTDA # Signal done
ipc_timestamp = 0
# Super-simple command language, driven by the test code on the DSP
def ipc_command(data, ext_data):
send_msg = False
done = True
log.debug ("ipc data %d, ext_data %x", data, ext_data)
if data == 0: # noop, with synchronous DONE
pass
elif data == 1: # async command: signal DONE after a delay (on 1.8+)
done = False
asyncio.ensure_future(ipc_delay_done())
elif data == 2: # echo back ext_data as a message command
send_msg = True
elif data == 3: # set ADSPCS
dsp.ADSPCS = ext_data
elif data == 4: # echo back microseconds since last timestamp command
global ipc_timestamp
t = round(time.time() * 1e6)
ext_data = t - ipc_timestamp
ipc_timestamp = t
send_msg = True
elif data == 5: # copy word at outbox[ext_data >> 16] to inbox[ext_data & 0xffff]
src = OUTBOX_OFFSET + 4 * (ext_data >> 16)
dst = INBOX_OFFSET + 4 * (ext_data & 0xffff)
for i in range(4):
bar4_mmap[dst + i] = bar4_mmap[src + i]
elif data == 6: # HDA RESET (init if not exists)
stream_id = ext_data & 0xff
if stream_id in hda_streams:
hda_streams[stream_id].reset()
else:
hda_str = HDAStream(stream_id)
hda_streams[stream_id] = hda_str
elif data == 7: # HDA CONFIG
stream_id = ext_data & 0xFF
buf_len = ext_data >> 8 & 0xFFFF
hda_str = hda_streams[stream_id]
hda_str.config(buf_len)
elif data == 8: # HDA START
stream_id = ext_data & 0xFF
hda_streams[stream_id].start()
hda_streams[stream_id].mem.seek(0)
elif data == 9: # HDA STOP
stream_id = ext_data & 0xFF
hda_streams[stream_id].stop()
elif data == 10: # HDA VALIDATE
stream_id = ext_data & 0xFF
hda_str = hda_streams[stream_id]
hda_str.debug()
is_ramp_data = True
hda_str.mem.seek(0)
for (i, val) in enumerate(hda_str.mem.read(256)):
if i != val:
is_ramp_data = False
# log.info("stream[%d][%d]: %d", stream_id, i, val) # debug helper
log.info("Is ramp data? " + str(is_ramp_data))
ext_data = int(is_ramp_data)
log.info(f"Ext data to send back on ramp status {ext_data}")
send_msg = True
elif data == 11: # HDA HOST OUT SEND
stream_id = ext_data & 0xff
buf = bytearray(256)
for i in range(0, 256):
buf[i] = i
hda_streams[stream_id].write(buf)
elif data == 12: # HDA PRINT
stream_id = ext_data & 0xFF
buf_len = ext_data >> 8 & 0xFFFF
hda_str = hda_streams[stream_id]
# check for wrap here
pos = hda_str.mem.tell()
read_lens = [buf_len, 0]
if pos + buf_len >= hda_str.buf_len*2:
read_lens[0] = hda_str.buf_len*2 - pos
read_lens[1] = buf_len - read_lens[0]
# validate the read lens
assert (read_lens[0] + pos) <= (hda_str.buf_len*2)
assert read_lens[0] % 128 == 0
assert read_lens[1] % 128 == 0
buf_data0 = hda_str.mem.read(read_lens[0])
hda_msg0 = buf_data0.decode("utf-8", "replace")
sys.stdout.write(hda_msg0)
if read_lens[1] != 0:
hda_str.mem.seek(0)
buf_data1 = hda_str.mem.read(read_lens[1])
hda_msg1 = buf_data1.decode("utf-8", "replace")
sys.stdout.write(hda_msg1)
pos = hda_str.mem.tell()
sys.stdout.flush()
else:
log.warning(f"acetool: Unrecognized IPC command 0x{data:x} ext 0x{ext_data:x}")
if not fw_is_alive():
if args.log_only:
log.info("DSP power seems off")
wait_fw_entered(timeout_s=None)
else:
log.warning("DSP power seems off?!")
time.sleep(2) # potential spam reduction
return
dsp.HFIPCXTDR = 1<<31 # Ack local interrupt, also signals DONE on v1.5
if done:
dsp.HFIPCXTDA = ~(1<<31) & dsp.HFIPCXTDA # Signal done
if send_msg:
log.debug("ipc: sending msg 0x%08x" % ext_data)
dsp.HFIPCXIDDY = ext_data
dsp.HFIPCXIDR = (1<<31) | ext_data
async def main():
#TODO this bit me, remove the globals, write a little FirmwareLoader class or something to contain.
global hda, sd, dsp, hda_ostream_id, hda_streams
try:
(hda, sd, dsp, hda_ostream_id) = map_regs()
except Exception as e:
log.error("Could not map device in sysfs; run as root?")
log.error(e)
sys.exit(1)
if args.log_only:
wait_fw_entered(timeout_s=None)
else:
if not args.fw_file:
log.error("Firmware file argument missing")
sys.exit(1)
load_firmware(args.fw_file)
time.sleep(0.1)
if not args.quiet:
sys.stdout.write("--\n")
hda_streams = dict()
last_seq = 0
while start_output is True:
await asyncio.sleep(0.03)
(last_seq, output) = winstream_read(last_seq)
if output:
sys.stdout.write(output)
sys.stdout.flush()
if not args.log_only:
if dsp.HFIPCXIDA & 0x80000000:
log.debug("ipc: Ack DSP reply with IDA_DONE")
dsp.HFIPCXIDA = 1<<31 # must ACK any DONE interrupts that arrive!
if dsp.HFIPCXTDR & 0x80000000:
ipc_command(dsp.HFIPCXTDR & ~0x80000000, dsp.HFIPCXTDDY)
ap = argparse.ArgumentParser(description="DSP loader/logger tool", allow_abbrev=False)
ap.add_argument("-q", "--quiet", action="store_true",
help="No loader output, just DSP logging")
ap.add_argument("-v", "--verbose", action="store_true",
help="More loader output, DEBUG logging level")
ap.add_argument("-l", "--log-only", action="store_true",
help="Don't load firmware, just show log output")
ap.add_argument("-n", "--no-history", action="store_true",
help="No current log buffer at start, just new output")
ap.add_argument("fw_file", nargs="?", help="Firmware file")
args = ap.parse_args()
if args.quiet:
log.setLevel(logging.WARN)
elif args.verbose:
log.setLevel(logging.DEBUG)
import cavstool
if __name__ == "__main__":
try:
asyncio.get_event_loop().run_until_complete(main())
asyncio.run(cavstool.main())
except KeyboardInterrupt:
start_output = False

View file

@ -21,15 +21,18 @@ PAGESZ = 4096
HUGEPAGESZ = 2 * 1024 * 1024
HUGEPAGE_FILE = "/dev/hugepages/cavs-fw-dma.tmp."
# SRAM windows. Each appears in a 128k region starting at 512k.
# SRAM windows. Base and stride varies depending on ADSP version
#
# Window 0 is the FW_STATUS area, and 4k after that the IPC "outbox"
# Window 1 is the IPC "inbox" (host-writable memory, just 384 bytes currently)
# Window 2 is unused by this script
# Window 2 is debug, divided into multiple slots, unused by this script
# Window 3 is winstream-formatted log output
OUTBOX_OFFSET = (512 + (0 * 128)) * 1024 + 4096
INBOX_OFFSET = (512 + (1 * 128)) * 1024
WINSTREAM_OFFSET = (512 + (3 * 128)) * 1024
WINDOW_BASE = 0x80000
WINDOW_STRIDE = 0x20000
WINDOW_BASE_ACE = 0x180000
WINDOW_STRIDE_ACE = 0x8000
# pylint: disable=duplicate-code
@ -188,17 +191,34 @@ class HDAStream:
self.debug()
log.info(f"Reset stream {self.stream_id}")
def adsp_is_cavs():
return cavs15 or cavs18 or cavs15
def adsp_is_ace():
return ace15 or ace20
def adsp_mem_window_config():
if adsp_is_ace():
base = WINDOW_BASE_ACE
stride = WINDOW_STRIDE_ACE
else:
base = WINDOW_BASE
stride = WINDOW_STRIDE
return (base, stride)
def map_regs():
p = runx(f"grep -iEl 'PCI_CLASS=40(10|38)0' /sys/bus/pci/devices/*/uevent")
pcidir = os.path.dirname(p)
# Platform/quirk detection. ID lists cribbed from the SOF kernel driver
global cavs15, cavs18, cavs25
global cavs15, cavs18, cavs25, ace15, ace20
did = int(open(f"{pcidir}/device").read().rstrip(), 16)
cavs15 = did in [ 0x5a98, 0x1a98, 0x3198 ]
cavs18 = did in [ 0x9dc8, 0xa348, 0x02c8, 0x06c8, 0xa3f0 ]
cavs25 = did in [ 0xa0c8, 0x43c8, 0x4b55, 0x4b58, 0x7ad0, 0x51c8 ]
ace15 = did in [ 0x7e28 ]
ace20 = did in [ 0xa828 ]
# Check sysfs for a loaded driver and remove it
if os.path.exists(f"{pcidir}/driver"):
@ -249,14 +269,28 @@ def map_regs():
global bar4_mmap
(bar4_mem, bar4_mmap) = bar_map(pcidir, 4)
dsp = Regs(bar4_mem)
dsp.ADSPCS = 0x00004
dsp.HIPCTDR = 0x00040 if cavs15 else 0x000c0
dsp.HIPCTDA = 0x000c4 # 1.8+ only
dsp.HIPCTDD = 0x00044 if cavs15 else 0x000c8
dsp.HIPCIDR = 0x00048 if cavs15 else 0x000d0
dsp.HIPCIDA = 0x000d4 # 1.8+ only
dsp.HIPCIDD = 0x0004c if cavs15 else 0x000d8
dsp.SRAM_FW_STATUS = 0x80000 # Start of first SRAM window
if adsp_is_ace():
dsp.HFDSSCS = 0x1000
dsp.HFPWRCTL = 0x1d18
dsp.HFPWRSTS = 0x1d1c
dsp.DSP2CXCTL_PRIMARY = 0x178d04
dsp.HFIPCXTDR = 0x73200
dsp.HFIPCXTDA = 0x73204
dsp.HFIPCXIDR = 0x73210
dsp.HFIPCXIDA = 0x73214
dsp.HFIPCXCTL = 0x73228
dsp.HFIPCXTDDY = 0x73300
dsp.HFIPCXIDDY = 0x73380
dsp.SRAM_FW_STATUS = WINDOW_BASE_ACE
else:
dsp.ADSPCS = 0x00004
dsp.HIPCTDR = 0x00040 if cavs15 else 0x000c0
dsp.HIPCTDA = 0x000c4 # 1.8+ only
dsp.HIPCTDD = 0x00044 if cavs15 else 0x000c8
dsp.HIPCIDR = 0x00048 if cavs15 else 0x000d0
dsp.HIPCIDA = 0x000d4 # 1.8+ only
dsp.HIPCIDD = 0x0004c if cavs15 else 0x000d8
dsp.SRAM_FW_STATUS = WINDOW_BASE # Start of first SRAM window
dsp.freeze()
return (hda, sd, dsp, hda_ostream_id)
@ -461,6 +495,128 @@ def load_firmware(fw_file):
sd.CTL |= 1
log.info(f"cAVS firmware load complete")
def load_firmware_ace(fw_file):
try:
fw_bytes = open(fw_file, "rb").read()
# Resize fw_bytes for MTL
if len(fw_bytes) < 512 * 1024:
fw_bytes += b'\x00' * (512 * 1024 - len(fw_bytes))
except Exception as e:
log.error(f"Could not read firmware file: `{fw_file}'")
log.error(e)
sys.exit(1)
(magic, sz) = struct.unpack("4sI", fw_bytes[0:8])
if magic == b'$AE1':
log.info(f"Trimming {sz} bytes of extended manifest")
fw_bytes = fw_bytes[sz:len(fw_bytes)]
# This actually means "enable access to BAR4 registers"!
hda.PPCTL |= (1 << 30) # GPROCEN, "global processing enable"
log.info("Resetting HDA device")
hda.GCTL = 0
while hda.GCTL & 1: pass
hda.GCTL = 1
while not hda.GCTL & 1: pass
log.info("Turning of DSP subsystem")
dsp.HFDSSCS &= ~(1 << 16) # clear SPA bit
time.sleep(0.002)
# wait for CPA bit clear
while dsp.HFDSSCS & (1 << 24):
log.info("Waiting for DSP subsystem power off")
time.sleep(0.1)
log.info("Turning on DSP subsystem")
dsp.HFDSSCS |= (1 << 16) # set SPA bit
time.sleep(0.002) # needed as the CPA bit may be unstable
# wait for CPA bit
while not dsp.HFDSSCS & (1 << 24):
log.info("Waiting for DSP subsystem power on")
time.sleep(0.1)
log.info("Turning on Domain0")
dsp.HFPWRCTL |= 0x1 # set SPA bit
time.sleep(0.002) # needed as the CPA bit may be unstable
# wait for CPA bit
while not dsp.HFPWRSTS & 0x1:
log.info("Waiting for DSP domain0 power on")
time.sleep(0.1)
log.info("Turning off Primary Core")
dsp.DSP2CXCTL_PRIMARY &= ~(0x1) # clear SPA
time.sleep(0.002) # wait for CPA settlement
while dsp.DSP2CXCTL_PRIMARY & (1 << 8):
log.info("Waiting for DSP primary core power off")
time.sleep(0.1)
log.info(f"Configuring HDA stream {hda_ostream_id} to transfer firmware image")
(buf_list_addr, num_bufs) = setup_dma_mem(fw_bytes)
sd.CTL = 1
while (sd.CTL & 1) == 0: pass
sd.CTL = 0
while (sd.CTL & 1) == 1: pass
sd.CTL |= (1 << 20) # Set stream ID to anything non-zero
sd.BDPU = (buf_list_addr >> 32) & 0xffffffff
sd.BDPL = buf_list_addr & 0xffffffff
sd.CBL = len(fw_bytes)
sd.LVI = num_bufs - 1
hda.PPCTL |= (1 << hda_ostream_id)
# SPIB ("Software Position In Buffer") is an Intel HDA extension
# that puts a transfer boundary into the stream beyond which the
# other side will not read. The ROM wants to poll on a "buffer
# full" bit on the other side that only works with this enabled.
hda.SPBFCTL |= (1 << hda_ostream_id)
hda.SD_SPIB = len(fw_bytes)
# Send the DSP an IPC message to tell the device how to boot.
# Note: with cAVS 1.8+ the ROM receives the stream argument as an
# index within the array of output streams (and we always use the
# first one by construction). But with 1.5 it's the HDA index,
# and depends on the number of input streams on the device.
stream_idx = 0
ipcval = ( (1 << 31) # BUSY bit
| (0x01 << 24) # type = PURGE_FW
| (1 << 14) # purge_fw = 1
| (stream_idx << 9)) # dma_id
log.info(f"Sending IPC command, HFIPCXIDR = 0x{ipcval:x}")
dsp.HFIPCXIDR = ipcval
log.info("Turning on Primary Core")
dsp.DSP2CXCTL_PRIMARY |= 0x1 # clear SPA
time.sleep(0.002) # wait for CPA settlement
while not dsp.DSP2CXCTL_PRIMARY & (1 << 8):
log.info("Waiting for DSP primary core power on")
time.sleep(0.1)
log.info("Waiting for IPC acceptance")
while dsp.HFIPCXIDR & (1 << 31):
log.info("Waiting for IPC busy bit clear")
time.sleep(0.1)
log.info("ACK IPC")
dsp.HFIPCXIDA |= (1 << 31)
log.info(f"Starting DMA, FW_STATUS = 0x{dsp.SRAM_FW_STATUS:x}")
sd.CTL |= 2 # START flag
wait_fw_entered()
# Turn DMA off and reset the stream. Clearing START first is a
# noop per the spec, but absolutely required for stability.
# Apparently the reset doesn't stop the stream, and the next load
# starts before it's ready and kills the load (and often the DSP).
# The sleep too is required, on at least one board (a fast
# chromebook) putting the two writes next each other also hangs
# the DSP!
sd.CTL &= ~2 # clear START
time.sleep(0.1)
sd.CTL |= 1
log.info(f"ACE firmware load complete")
def fw_is_alive():
return dsp.SRAM_FW_STATUS & ((1 << 28) - 1) == 5 # "FW_ENTERED"
@ -485,17 +641,20 @@ def wait_fw_entered(timeout_s=2):
else:
log.info("FW alive, FW_STATUS = 0x%x", dsp.SRAM_FW_STATUS)
def winstream_offset():
( base, stride ) = adsp_mem_window_config()
return base + stride * 3
# This SHOULD be just "mem[start:start+length]", but slicing an mmap
# array seems to be unreliable on one of my machines (python 3.6.9 on
# Ubuntu 18.04). Read out bytes individually.
def win_read(start, length):
try:
return b''.join(bar4_mmap[WINSTREAM_OFFSET + x].to_bytes(1, 'little')
return b''.join(bar4_mmap[winstream_offset() + x].to_bytes(1, 'little')
for x in range(start, start + length))
except IndexError as ie:
# A FW in a bad state may cause winstream garbage
log.error("IndexError in bar4_mmap[%d + %d]", WINSTREAM_OFFSET, start)
log.error("IndexError in bar4_mmap[%d + %d]", winstream_offset(), start)
log.error("bar4_mmap.size()=%d", bar4_mmap.size())
raise ie
@ -528,7 +687,18 @@ def winstream_read(last_seq):
async def ipc_delay_done():
await asyncio.sleep(0.1)
dsp.HIPCTDA = 1<<31
if adsp_is_ace():
dsp.HFIPCXTDA = ~(1<<31) & dsp.HFIPCXTDA # Signal done
else:
dsp.HIPCTDA = 1<<31
def inbox_offset():
( base, stride ) = adsp_mem_window_config()
return base + stride
def outbox_offset():
( base, _ ) = adsp_mem_window_config()
return base + 4096
ipc_timestamp = 0
@ -554,8 +724,8 @@ def ipc_command(data, ext_data):
ipc_timestamp = t
send_msg = True
elif data == 5: # copy word at outbox[ext_data >> 16] to inbox[ext_data & 0xffff]
src = OUTBOX_OFFSET + 4 * (ext_data >> 16)
dst = INBOX_OFFSET + 4 * (ext_data & 0xffff)
src = outbox_offset() + 4 * (ext_data >> 16)
dst = inbox_offset() + 4 * (ext_data & 0xffff)
for i in range(4):
bar4_mmap[dst + i] = bar4_mmap[src + i]
elif data == 6: # HDA RESET (init if not exists)
@ -634,15 +804,37 @@ def ipc_command(data, ext_data):
return
dsp.HIPCTDR = 1<<31 # Ack local interrupt, also signals DONE on v1.5
if cavs18:
time.sleep(0.01) # Needed on 1.8, or the command below won't send!
if adsp_is_ace():
dsp.HFIPCXTDR = 1<<31 # Ack local interrupt, also signals DONE on v1.5
if done:
dsp.HFIPCXTDA = ~(1<<31) & dsp.HFIPCXTDA # Signal done
if send_msg:
log.debug("ipc: sending msg 0x%08x" % ext_data)
dsp.HFIPCXIDDY = ext_data
dsp.HFIPCXIDR = (1<<31) | ext_data
else:
dsp.HIPCTDR = 1<<31 # Ack local interrupt, also signals DONE on v1.5
if cavs18:
time.sleep(0.01) # Needed on 1.8, or the command below won't send!
if done and not cavs15:
dsp.HIPCTDA = 1<<31 # Signal done
if send_msg:
dsp.HIPCIDD = ext_data
dsp.HIPCIDR = (1<<31) | ext_data
if done and not cavs15:
dsp.HIPCTDA = 1<<31 # Signal done
if send_msg:
dsp.HIPCIDD = ext_data
dsp.HIPCIDR = (1<<31) | ext_data
def handle_ipc():
if adsp_is_ace():
if dsp.HFIPCXIDA & 0x80000000:
log.debug("ipc: Ack DSP reply with IDA_DONE")
dsp.HFIPCXIDA = 1<<31 # must ACK any DONE interrupts that arrive!
if dsp.HFIPCXTDR & 0x80000000:
ipc_command(dsp.HFIPCXTDR & ~0x80000000, dsp.HFIPCXTDDY)
return
if dsp.HIPCIDA & 0x80000000:
dsp.HIPCIDA = 1<<31 # must ACK any DONE interrupts that arrive!
if dsp.HIPCTDR & 0x80000000:
ipc_command(dsp.HIPCTDR & ~0x80000000, dsp.HIPCTDD)
async def main():
#TODO this bit me, remove the globals, write a little FirmwareLoader class or something to contain.
@ -664,8 +856,12 @@ async def main():
log.error("Firmware file argument missing")
sys.exit(1)
load_firmware(args.fw_file)
if adsp_is_ace():
load_firmware_ace(args.fw_file)
else:
load_firmware(args.fw_file)
time.sleep(0.1)
if not args.quiet:
sys.stdout.write("--\n")
@ -679,10 +875,7 @@ async def main():
sys.stdout.write(output)
sys.stdout.flush()
if not args.log_only:
if dsp.HIPCIDA & 0x80000000:
dsp.HIPCIDA = 1<<31 # must ACK any DONE interrupts that arrive!
if dsp.HIPCTDR & 0x80000000:
ipc_command(dsp.HIPCTDR & ~0x80000000, dsp.HIPCTDD)
handle_ipc()
ap = argparse.ArgumentParser(description="DSP loader/logger tool", allow_abbrev=False)