zephyr/drivers/dai/nxp/sai/sai.c

942 lines
28 KiB
C
Raw Normal View History

/*
* Copyright 2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/dai.h>
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include "sai.h"
/* used for binding the driver */
#define DT_DRV_COMPAT nxp_dai_sai
#define SAI_TX_RX_HW_DISABLE_TIMEOUT 50
/* TODO list:
*
* 1) No busy waiting should be performed in any of the operations.
* In the case of STOP(), the operation should be split into TRIGGER_STOP
* and TRIGGER_POST_STOP. (SOF)
*
* 2) The SAI ISR should stop the SAI whenever a FIFO error interrupt
* is raised.
*
* 3) Transmitter/receiver may remain enabled after sai_tx_rx_disable().
* Fix this.
*/
#ifdef CONFIG_SAI_HAS_MCLK_CONFIG_OPTION
/* note: i.MX8 boards don't seem to support the MICS field in the MCR
* register. As such, the MCLK source field of sai_master_clock_t is
* useless. I'm assuming the source is selected through xCR2's MSEL.
*
* TODO: for now, this function will set MCR's MSEL to the same value
* as xCR2's MSEL or, rather, to the same MCLK as the one used for
* generating BCLK. Is there a need to support different MCLKs in
* xCR2 and MCR?
*/
static int sai_mclk_config(const struct device *dev,
sai_bclk_source_t bclk_source,
const struct sai_bespoke_config *bespoke)
{
const struct sai_config *cfg;
struct sai_data *data;
sai_master_clock_t mclk_config;
uint32_t msel, mclk_rate;
int ret;
cfg = dev->config;
data = dev->data;
mclk_config.mclkOutputEnable = cfg->mclk_is_output;
ret = get_msel(bclk_source, &msel);
if (ret < 0) {
LOG_ERR("invalid MCLK source %d for MSEL", bclk_source);
return ret;
}
/* get MCLK's rate */
ret = get_mclk_rate(&cfg->clk_data, bclk_source, &mclk_rate);
if (ret < 0) {
LOG_ERR("failed to query MCLK's rate");
return ret;
}
LOG_DBG("source MCLK is %u", mclk_rate);
LOG_DBG("target MCLK is %u", bespoke->mclk_rate);
/* source MCLK rate */
mclk_config.mclkSourceClkHz = mclk_rate;
/* target MCLK rate */
mclk_config.mclkHz = bespoke->mclk_rate;
/* commit configuration */
SAI_SetMasterClockConfig(UINT_TO_I2S(data->regmap), &mclk_config);
set_msel(data->regmap, msel);
return 0;
}
#endif /* CONFIG_SAI_HAS_MCLK_CONFIG_OPTION */
void sai_isr(const void *parameter)
{
const struct device *dev;
struct sai_data *data;
dev = parameter;
data = dev->data;
/* check for TX FIFO error */
if (SAI_TX_RX_STATUS_IS_SET(DAI_DIR_TX, data->regmap, kSAI_FIFOErrorFlag)) {
LOG_ERR("FIFO underrun detected");
/* TODO: this will crash the program and should be addressed as
* mentioned in TODO list's 2).
*/
z_irq_spurious(NULL);
}
/* check for RX FIFO error */
if (SAI_TX_RX_STATUS_IS_SET(DAI_DIR_RX, data->regmap, kSAI_FIFOErrorFlag)) {
LOG_ERR("FIFO overrun detected");
/* TODO: this will crash the program and should be addressed as
* mentioned in TODO list's 2).
*/
z_irq_spurious(NULL);
}
}
static int sai_config_get(const struct device *dev,
struct dai_config *cfg,
enum dai_dir dir)
{
struct sai_data *data = dev->data;
/* dump content of the DAI configuration */
memcpy(cfg, &data->cfg, sizeof(*cfg));
return 0;
}
static const struct dai_properties
*sai_get_properties(const struct device *dev, enum dai_dir dir, int stream_id)
{
const struct sai_config *cfg = dev->config;
switch (dir) {
case DAI_DIR_RX:
return cfg->rx_props;
case DAI_DIR_TX:
return cfg->tx_props;
default:
LOG_ERR("invalid direction: %d", dir);
return NULL;
}
CODE_UNREACHABLE;
}
#ifdef CONFIG_SAI_IMX93_ERRATA_051421
/* notes:
* 1) TX and RX operate in the same mode: master/slave. As such,
* there's no need to check the mode for both directions.
*
* 2) Only one of the directions can operate in SYNC mode at a
* time.
*
* 3) What this piece of code does is it makes the SYNC direction
* use the ASYNC direction's BCLK that comes from its input pad.
* Logically speaking, this would look like:
*
* +--------+ +--------+
* | TX | | RX |
* | module | | module |
* +--------+ +--------+
* | ^ |
* | | |
* TX_BCLK | |____________| RX_BCLK
* | |
* V V
* +---------+ +---------+
* | TX BCLK | | RX BCLK |
* | pad | | pad |
* +---------+ +---------+
* | |
* | TX_BCLK | RX_BCLK
* V V
*
* Without BCI enabled, the TX module would use an RX_BCLK
* that's divided instead of the one that's obtained from
* bypassing the MCLK (i.e: TX_BCLK would have the value of
* MCLK / ((RX_DIV + 1) * 2)). If BCI is 1, then TX_BCLK will
* be the same as the RX_BCLK that's obtained from bypassing
* the MCLK on RX's side.
*
* 4) The check for BCLK == MCLK is there to see if the ASYNC
* direction will have the BYP bit toggled.
*
* IMPORTANT1: in the above diagram and information, RX is SYNC
* with TX. The same applies if RX is SYNC with TX. Also, this
* applies to i.MX93. For other SoCs, things may be different
* so use this information with caution.
*
* IMPORTANT2: for this to work, you also need to enable the
* pad's input path. For i.MX93, this can be achieved by setting
* the pad's SION bit.
*/
static void sai_config_set_err_051421(I2S_Type *base,
const struct sai_config *cfg,
const struct sai_bespoke_config *bespoke,
sai_transceiver_t *rx_config,
sai_transceiver_t *tx_config)
{
if (tx_config->masterSlave == kSAI_Master &&
bespoke->mclk_rate == bespoke->bclk_rate) {
if (cfg->tx_sync_mode == kSAI_ModeSync) {
base->TCR2 |= I2S_TCR2_BCI(1);
}
if (cfg->rx_sync_mode == kSAI_ModeSync) {
base->RCR2 |= I2S_RCR2_BCI(1);
}
}
}
#endif /* CONFIG_SAI_IMX93_ERRATA_051421 */
static int sai_config_set(const struct device *dev,
const struct dai_config *cfg,
const void *bespoke_data)
{
const struct sai_bespoke_config *bespoke;
sai_transceiver_t *rx_config, *tx_config;
struct sai_data *data;
const struct sai_config *sai_cfg;
int ret;
if (cfg->type != DAI_IMX_SAI) {
LOG_ERR("wrong DAI type: %d", cfg->type);
return -EINVAL;
}
bespoke = bespoke_data;
data = dev->data;
sai_cfg = dev->config;
rx_config = &data->rx_config;
tx_config = &data->tx_config;
/* since this function configures the transmitter AND the receiver, that
* means both of them need to be stopped. As such, doing the state
* transition here will also result in a state check.
*/
ret = sai_update_state(DAI_DIR_TX, data, DAI_STATE_READY);
if (ret < 0) {
LOG_ERR("failed to update TX state. Reason: %d", ret);
return ret;
}
ret = sai_update_state(DAI_DIR_RX, data, DAI_STATE_READY);
if (ret < 0) {
LOG_ERR("failed to update RX state. Reason: %d", ret);
return ret;
}
/* condition: BCLK = FSYNC * TDM_SLOT_WIDTH * TDM_SLOTS */
if (bespoke->bclk_rate !=
(bespoke->fsync_rate * bespoke->tdm_slot_width * bespoke->tdm_slots)) {
LOG_ERR("bad BCLK value: %d", bespoke->bclk_rate);
return -EINVAL;
}
/* TODO: this should be removed if we're to support sw channels != hw channels */
if (count_leading_zeros(~bespoke->tx_slots) != bespoke->tdm_slots ||
count_leading_zeros(~bespoke->rx_slots) != bespoke->tdm_slots) {
LOG_ERR("number of TX/RX slots doesn't match number of TDM slots");
return -EINVAL;
}
/* get default configurations */
get_bclk_default_config(&tx_config->bitClock);
get_fsync_default_config(&tx_config->frameSync);
get_serial_default_config(&tx_config->serialData);
get_fifo_default_config(&tx_config->fifo);
/* note1: this may be obvious but enabling multiple SAI
* channels (or data lines) may lead to FIFO starvation/
* overflow if data is not written/read from the respective
* TDR/RDR registers.
*
* note2: the SAI data line should be enabled based on
* the direction (TX/RX) we're enabling. Enabling the
* data line for the opposite direction will lead to FIFO
* overrun/underrun when working with a SYNC direction.
*
* note3: the TX/RX data line shall be enabled/disabled
* via the sai_trigger_() suite to avoid scenarios in
* which one configures both direction but only starts
* the SYNC direction which would lead to a FIFO underrun.
*/
tx_config->channelMask = 0x0;
/* TODO: for now, only MCLK1 is supported */
tx_config->bitClock.bclkSource = kSAI_BclkSourceMclkOption1;
/* FSYNC is asserted for tdm_slot_width BCLKs */
tx_config->frameSync.frameSyncWidth = bespoke->tdm_slot_width;
/* serial data common configuration */
tx_config->serialData.dataWord0Length = bespoke->tdm_slot_width;
tx_config->serialData.dataWordNLength = bespoke->tdm_slot_width;
tx_config->serialData.dataFirstBitShifted = bespoke->tdm_slot_width;
tx_config->serialData.dataWordNum = bespoke->tdm_slots;
/* clock provider configuration */
switch (cfg->format & DAI_FORMAT_CLOCK_PROVIDER_MASK) {
case DAI_CBP_CFP:
tx_config->masterSlave = kSAI_Slave;
break;
case DAI_CBC_CFC:
tx_config->masterSlave = kSAI_Master;
break;
case DAI_CBC_CFP:
case DAI_CBP_CFC:
LOG_ERR("unsupported provider configuration: %d",
cfg->format & DAI_FORMAT_CLOCK_PROVIDER_MASK);
return -ENOTSUP;
default:
LOG_ERR("invalid provider configuration: %d",
cfg->format & DAI_FORMAT_CLOCK_PROVIDER_MASK);
return -EINVAL;
}
LOG_DBG("SAI is in %d mode", tx_config->masterSlave);
/* protocol configuration */
switch (cfg->format & DAI_FORMAT_PROTOCOL_MASK) {
case DAI_PROTO_I2S:
/* BCLK is active LOW */
tx_config->bitClock.bclkPolarity = kSAI_PolarityActiveLow;
/* FSYNC is active LOW */
tx_config->frameSync.frameSyncPolarity = kSAI_PolarityActiveLow;
break;
case DAI_PROTO_DSP_A:
/* FSYNC is asserted for a single BCLK */
tx_config->frameSync.frameSyncWidth = 1;
/* BCLK is active LOW */
tx_config->bitClock.bclkPolarity = kSAI_PolarityActiveLow;
break;
default:
LOG_ERR("unsupported DAI protocol: %d",
cfg->format & DAI_FORMAT_PROTOCOL_MASK);
return -EINVAL;
}
LOG_DBG("SAI uses protocol: %d",
cfg->format & DAI_FORMAT_PROTOCOL_MASK);
/* clock inversion configuration */
switch (cfg->format & DAI_FORMAT_CLOCK_INVERSION_MASK) {
case DAI_INVERSION_IB_IF:
SAI_INVERT_POLARITY(tx_config->bitClock.bclkPolarity);
SAI_INVERT_POLARITY(tx_config->frameSync.frameSyncPolarity);
break;
case DAI_INVERSION_IB_NF:
SAI_INVERT_POLARITY(tx_config->bitClock.bclkPolarity);
break;
case DAI_INVERSION_NB_IF:
SAI_INVERT_POLARITY(tx_config->frameSync.frameSyncPolarity);
break;
case DAI_INVERSION_NB_NF:
/* nothing to do here */
break;
default:
LOG_ERR("invalid clock inversion configuration: %d",
cfg->format & DAI_FORMAT_CLOCK_INVERSION_MASK);
return -EINVAL;
}
LOG_DBG("FSYNC polarity: %d", tx_config->frameSync.frameSyncPolarity);
LOG_DBG("BCLK polarity: %d", tx_config->bitClock.bclkPolarity);
/* duplicate TX configuration */
memcpy(rx_config, tx_config, sizeof(sai_transceiver_t));
tx_config->serialData.dataMaskedWord = ~bespoke->tx_slots;
rx_config->serialData.dataMaskedWord = ~bespoke->rx_slots;
tx_config->fifo.fifoWatermark = sai_cfg->tx_fifo_watermark - 1;
rx_config->fifo.fifoWatermark = sai_cfg->rx_fifo_watermark - 1;
LOG_DBG("RX watermark: %d", sai_cfg->rx_fifo_watermark);
LOG_DBG("TX watermark: %d", sai_cfg->tx_fifo_watermark);
/* set the synchronization mode based on data passed from the DTS */
tx_config->syncMode = sai_cfg->tx_sync_mode;
rx_config->syncMode = sai_cfg->rx_sync_mode;
/* commit configuration */
SAI_RxSetConfig(UINT_TO_I2S(data->regmap), rx_config);
SAI_TxSetConfig(UINT_TO_I2S(data->regmap), tx_config);
/* a few notes here:
* 1) TX and RX operate in the same mode: master or slave.
* 2) Setting BCLK's rate needs to be performed explicitly
* since SetConfig() doesn't do it for us.
* 3) Setting BCLK's rate has to be performed after the
* SetConfig() call as that resets the SAI registers.
*/
if (tx_config->masterSlave == kSAI_Master) {
SAI_TxSetBitClockRate(UINT_TO_I2S(data->regmap), bespoke->mclk_rate,
bespoke->fsync_rate, bespoke->tdm_slot_width,
bespoke->tdm_slots);
SAI_RxSetBitClockRate(UINT_TO_I2S(data->regmap), bespoke->mclk_rate,
bespoke->fsync_rate, bespoke->tdm_slot_width,
bespoke->tdm_slots);
}
#ifdef CONFIG_SAI_HAS_MCLK_CONFIG_OPTION
ret = sai_mclk_config(dev, tx_config->bitClock.bclkSource, bespoke);
if (ret < 0) {
LOG_ERR("failed to set MCLK configuration");
return ret;
}
#endif /* CONFIG_SAI_HAS_MCLK_CONFIG_OPTION */
#ifdef CONFIG_SAI_IMX93_ERRATA_051421
sai_config_set_err_051421(UINT_TO_I2S(data->regmap),
sai_cfg, bespoke,
rx_config, tx_config);
#endif /* CONFIG_SAI_IMX93_ERRATA_051421 */
/* this is needed so that rates different from FSYNC_RATE
* will not be allowed.
*
* this is because the hardware is configured to match
* the topology rates so attempting to play a file using
* a different rate from the one configured in the hardware
* doesn't work properly.
*
* if != 0, SOF will raise an error if the PCM rate is
* different than the hardware rate (a.k.a this one).
*/
data->cfg.rate = bespoke->fsync_rate;
/* SOF note: we don't support a variable number of channels
* at the moment so leaving the number of channels as 0 is
* unnecessary and leads to issues (e.g: the mixer buffers
* use this value to set the number of channels so having
* a 0 as this value leads to mixer buffers having 0 channels,
* which, in turn, leads to the DAI ending up with 0 channels,
* thus resulting in an error)
*/
data->cfg.channels = bespoke->tdm_slots;
sai_dump_register_data(data->regmap);
return 0;
}
/* SOF note: please be very careful with this function as it does
* busy waiting and may mess up your timing in time critial applications
* (especially with timer domain). If this becomes unusable, the busy
* waiting should be removed altogether and the HW state check should
* be performed in sai_trigger_start() or in sai_config_set().
*
* TODO: seems like the transmitter still remains active (even if 1ms
* has passed after doing a sai_trigger_stop()!). Most likely this is
* because sai_trigger_stop() immediately stops the data line w/o
* checking the HW state of the transmitter/receiver. As such, to get
* rid of the busy waiting, the STOP operation may have to be split into
* 2 operations: TRIG_STOP and TRIG_POST_STOP.
*/
static bool sai_dir_disable(struct sai_data *data, enum dai_dir dir)
{
/* VERY IMPORTANT: DO NOT use SAI_TxEnable/SAI_RxEnable
* here as they do not disable the ASYNC direction.
* Since the software logic assures that the ASYNC direction
* is not disabled before the SYNC direction, we can force
* the disablement of the given direction.
*/
sai_tx_rx_force_disable(dir, data->regmap);
/* please note the difference between the transmitter/receiver's
* hardware states and their software states. The software
* states can be obtained by reading data->tx/rx_enabled, while
* the hardware states can be obtained by reading TCSR/RCSR. The
* hardware state can actually differ from the software state.
* Here, we're interested in reading the hardware state which
* indicates if the transmitter/receiver was actually disabled
* or not.
*/
return WAIT_FOR(!SAI_TX_RX_IS_HW_ENABLED(dir, data->regmap),
SAI_TX_RX_HW_DISABLE_TIMEOUT, k_busy_wait(1));
}
static int sai_tx_rx_disable(struct sai_data *data,
const struct sai_config *cfg, enum dai_dir dir)
{
enum dai_dir sync_dir, async_dir;
bool ret;
/* sai_disable() should never be called from ISR context
* as it does some busy waiting.
*/
if (k_is_in_isr()) {
LOG_ERR("sai_disable() should never be called from ISR context");
return -EINVAL;
}
if (cfg->tx_sync_mode == kSAI_ModeAsync &&
cfg->rx_sync_mode == kSAI_ModeAsync) {
ret = sai_dir_disable(data, dir);
if (!ret) {
LOG_ERR("timed out while waiting for dir %d disable", dir);
return -ETIMEDOUT;
}
} else {
sync_dir = SAI_TX_RX_GET_SYNC_DIR(cfg);
async_dir = SAI_TX_RX_GET_ASYNC_DIR(cfg);
if (dir == sync_dir) {
ret = sai_dir_disable(data, sync_dir);
if (!ret) {
LOG_ERR("timed out while waiting for dir %d disable",
sync_dir);
return -ETIMEDOUT;
}
if (!SAI_TX_RX_DIR_IS_SW_ENABLED(async_dir, data)) {
ret = sai_dir_disable(data, async_dir);
if (!ret) {
LOG_ERR("timed out while waiting for dir %d disable",
async_dir);
return -ETIMEDOUT;
}
}
} else {
if (!SAI_TX_RX_DIR_IS_SW_ENABLED(sync_dir, data)) {
ret = sai_dir_disable(data, async_dir);
if (!ret) {
LOG_ERR("timed out while waiting for dir %d disable",
async_dir);
return -ETIMEDOUT;
}
}
}
}
return 0;
}
static int sai_trigger_pause(const struct device *dev,
enum dai_dir dir)
{
struct sai_data *data;
const struct sai_config *cfg;
int ret;
data = dev->data;
cfg = dev->config;
if (dir != DAI_DIR_RX && dir != DAI_DIR_TX) {
LOG_ERR("invalid direction: %d", dir);
return -EINVAL;
}
/* attempt to change state */
ret = sai_update_state(dir, data, DAI_STATE_PAUSED);
if (ret < 0) {
LOG_ERR("failed to transition to PAUSED from %d. Reason: %d",
sai_get_state(dir, data), ret);
return ret;
}
LOG_DBG("pause on direction %d", dir);
ret = sai_tx_rx_disable(data, cfg, dir);
if (ret < 0) {
return ret;
}
/* disable TX/RX data line */
sai_tx_rx_set_dline_mask(dir, data->regmap, 0x0);
/* update the software state of TX/RX */
sai_tx_rx_sw_enable_disable(dir, data, false);
return 0;
}
static int sai_trigger_stop(const struct device *dev,
enum dai_dir dir)
{
struct sai_data *data;
const struct sai_config *cfg;
int ret;
uint32_t old_state;
data = dev->data;
cfg = dev->config;
old_state = sai_get_state(dir, data);
if (dir != DAI_DIR_RX && dir != DAI_DIR_TX) {
LOG_ERR("invalid direction: %d", dir);
return -EINVAL;
}
/* attempt to change state */
ret = sai_update_state(dir, data, DAI_STATE_STOPPING);
if (ret < 0) {
LOG_ERR("failed to transition to STOPPING from %d. Reason: %d",
sai_get_state(dir, data), ret);
return ret;
}
LOG_DBG("stop on direction %d", dir);
if (old_state == DAI_STATE_PAUSED) {
/* if SAI was previously paused then all that's
* left to do is disable the DMA requests and
* the data line.
*/
goto out_dmareq_disable;
}
ret = sai_tx_rx_disable(data, cfg, dir);
if (ret < 0) {
return ret;
}
/* update the software state of TX/RX */
sai_tx_rx_sw_enable_disable(dir, data, false);
/* disable TX/RX data line */
sai_tx_rx_set_dline_mask(dir, data->regmap, 0x0);
out_dmareq_disable:
/* disable DMA requests */
SAI_TX_RX_DMA_ENABLE_DISABLE(dir, data->regmap, false);
/* disable error interrupt */
SAI_TX_RX_ENABLE_DISABLE_IRQ(dir, data->regmap,
kSAI_FIFOErrorInterruptEnable, false);
return 0;
}
/* notes:
* 1) The "rx_sync_mode" and "tx_sync_mode" properties force the user to pick from
* SYNC and ASYNC for each direction. As such, there are 4 possible combinations
* that need to be covered here:
* a) TX ASYNC, RX ASYNC
* b) TX SYNC, RX ASYNC
* c) TX ASYNC, RX SYNC
* d) TX SYNC, RX SYNC
*
* Combination d) is not valid and is covered by a BUILD_ASSERT(). As such, there are 3 valid
* combinations that need to be supported. Since the main branch of the IF statement covers
* combination a), there's only combinations b) and c) to be covered here.
*
* 2) We can distinguish between 3 types of directions:
* a) The target direction. This is the direction on which we want to perform the
* software reset.
* b) The SYNC direction. This is, well, the direction that's in SYNC with the other
* direction.
* c) The ASYNC direction.
*
* Of course, the target direction may differ from the SYNC or ASYNC directions, but it
* can't differ from both of them at the same time (i.e: TARGET != SYNC AND TARGET != ASYNC).
*
* If the target direction is the same as the SYNC direction then we can safely perform the
* software reset on the target direction as there's nothing depending on it. We also want
* to do a software reset on the ASYNC direction. We can only do this if the ASYNC direction
* wasn't software enabled (i.e: through an explicit trigger_start() call).
*
* If the target direction is the same as the ASYNC direction then we can only perform a
* software reset on it only if the SYNC direction wasn't software enabled (i.e: through an
* explicit trigger_start() call).
*/
static void sai_tx_rx_sw_reset(struct sai_data *data,
const struct sai_config *cfg, enum dai_dir dir)
{
enum dai_dir sync_dir, async_dir;
if (cfg->tx_sync_mode == kSAI_ModeAsync &&
cfg->rx_sync_mode == kSAI_ModeAsync) {
/* both directions are ASYNC w.r.t each other. As such, do
* software reset only on the targeted direction.
*/
SAI_TX_RX_SW_RESET(dir, data->regmap);
} else {
sync_dir = SAI_TX_RX_GET_SYNC_DIR(cfg);
async_dir = SAI_TX_RX_GET_ASYNC_DIR(cfg);
if (dir == sync_dir) {
SAI_TX_RX_SW_RESET(sync_dir, data->regmap);
if (!SAI_TX_RX_DIR_IS_SW_ENABLED(async_dir, data)) {
SAI_TX_RX_SW_RESET(async_dir, data->regmap);
}
} else {
if (!SAI_TX_RX_DIR_IS_SW_ENABLED(sync_dir, data)) {
SAI_TX_RX_SW_RESET(async_dir, data->regmap);
}
}
}
}
static int sai_trigger_start(const struct device *dev,
enum dai_dir dir)
{
struct sai_data *data;
const struct sai_config *cfg;
uint32_t old_state;
drivers: dai: sai: write some data into TX FIFO before start While running the following command: aplay ... | arecord ... multiple times, it was discovered that the SAI transmit FIFO goes into underrun. This only happened in the beginning, a few BCLK cycles after unmasking the transmit data line. With the following flow: 1) Trigger start on RX a) Do TX and RX software reset b) Enable RX FIFO error interrupt c) Enable RX DMA requests d) Enable receive data line e) Enable transmitter f) Enable receiver ..... some time has passed ..... 2) Trigger start on TX a) Enable DMA requests b) Enable transmit data line and configuration in mind: 1) RX is SYNC with TX 2) TX is ASYNC 3) Each FSYNC edge is 32-bit wide 4) Each frame contains 2 32-bit words this points to the following possibilites: 1) The transmitter is enabled so close to the start of a new frame that even though the DMA requests are asserted, the DMAC doesn't have enough time to service them until the module goes into underrun => the timing is bad. 2) The transmitter is enabled somewhat close to the start of a new frame such that the DMAC is not fast enough to service the module until it goes into underrun => DMAC is too slow AND the timing is bad. Although the exact cause was not pinpointed, this patch aims to fix the problem by writing a frame's worth of 0s in the transmit FIFO. This way, even if we're dealing with scenario 1) or 2), the DMAC has plenty of time to perform the transfer (i.e: a frame), thus avoiding the underrun. Signed-off-by: Laurentiu Mihalcea <laurentiu.mihalcea@nxp.com>
2024-05-14 17:02:11 +03:00
int ret, i;
data = dev->data;
cfg = dev->config;
old_state = sai_get_state(dir, data);
/* TX and RX should be triggered independently */
if (dir != DAI_DIR_RX && dir != DAI_DIR_TX) {
LOG_ERR("invalid direction: %d", dir);
return -EINVAL;
}
/* attempt to change state */
ret = sai_update_state(dir, data, DAI_STATE_RUNNING);
if (ret < 0) {
LOG_ERR("failed to transition to RUNNING from %d. Reason: %d",
sai_get_state(dir, data), ret);
return ret;
}
if (old_state == DAI_STATE_PAUSED) {
/* if the SAI has been paused then there's no
* point in issuing a software reset. As such,
* skip this part and go directly to the TX/RX
* enablement.
*/
goto out_enable_dline;
}
LOG_DBG("start on direction %d", dir);
sai_tx_rx_sw_reset(data, cfg, dir);
/* enable error interrupt */
SAI_TX_RX_ENABLE_DISABLE_IRQ(dir, data->regmap,
kSAI_FIFOErrorInterruptEnable, true);
drivers: dai: sai: write some data into TX FIFO before start While running the following command: aplay ... | arecord ... multiple times, it was discovered that the SAI transmit FIFO goes into underrun. This only happened in the beginning, a few BCLK cycles after unmasking the transmit data line. With the following flow: 1) Trigger start on RX a) Do TX and RX software reset b) Enable RX FIFO error interrupt c) Enable RX DMA requests d) Enable receive data line e) Enable transmitter f) Enable receiver ..... some time has passed ..... 2) Trigger start on TX a) Enable DMA requests b) Enable transmit data line and configuration in mind: 1) RX is SYNC with TX 2) TX is ASYNC 3) Each FSYNC edge is 32-bit wide 4) Each frame contains 2 32-bit words this points to the following possibilites: 1) The transmitter is enabled so close to the start of a new frame that even though the DMA requests are asserted, the DMAC doesn't have enough time to service them until the module goes into underrun => the timing is bad. 2) The transmitter is enabled somewhat close to the start of a new frame such that the DMAC is not fast enough to service the module until it goes into underrun => DMAC is too slow AND the timing is bad. Although the exact cause was not pinpointed, this patch aims to fix the problem by writing a frame's worth of 0s in the transmit FIFO. This way, even if we're dealing with scenario 1) or 2), the DMAC has plenty of time to perform the transfer (i.e: a frame), thus avoiding the underrun. Signed-off-by: Laurentiu Mihalcea <laurentiu.mihalcea@nxp.com>
2024-05-14 17:02:11 +03:00
/* avoid initial underrun by writing a frame's worth of 0s */
if (dir == DAI_DIR_TX) {
for (i = 0; i < data->cfg.channels; i++) {
SAI_WriteData(UINT_TO_I2S(data->regmap), cfg->tx_dline, 0x0);
}
}
/* TODO: for now, only DMA mode is supported */
SAI_TX_RX_DMA_ENABLE_DISABLE(dir, data->regmap, true);
out_enable_dline:
/* enable TX/RX data line. This translates to TX_DLINE0/RX_DLINE0
* being enabled.
*
* TODO: for now we only support 1 data line per direction.
*/
sai_tx_rx_set_dline_mask(dir, data->regmap,
SAI_TX_RX_DLINE_MASK(dir, cfg));
/* this will also enable the async side */
SAI_TX_RX_ENABLE_DISABLE(dir, data->regmap, true);
/* update the software state of TX/RX */
sai_tx_rx_sw_enable_disable(dir, data, true);
return 0;
}
static int sai_trigger(const struct device *dev,
enum dai_dir dir,
enum dai_trigger_cmd cmd)
{
switch (cmd) {
case DAI_TRIGGER_START:
return sai_trigger_start(dev, dir);
case DAI_TRIGGER_PAUSE:
return sai_trigger_pause(dev, dir);
case DAI_TRIGGER_STOP:
return sai_trigger_stop(dev, dir);
case DAI_TRIGGER_PRE_START:
case DAI_TRIGGER_COPY:
/* COPY and PRE_START don't require the SAI
* driver to do anything at the moment so
* mark them as successful via a NULL return
*
* note: although the rest of the unhandled
* trigger commands may be valid, return
* an error code for them as they aren't
* implemented ATM (since they're not
* mandatory for the SAI driver to work).
*/
return 0;
default:
LOG_ERR("invalid trigger command: %d", cmd);
return -EINVAL;
}
CODE_UNREACHABLE;
}
static int sai_probe(const struct device *dev)
{
/* nothing to be done here but sadly mandatory to implement */
return 0;
}
static int sai_remove(const struct device *dev)
{
/* nothing to be done here but sadly mandatory to implement */
return 0;
}
static const struct dai_driver_api sai_api = {
.config_set = sai_config_set,
.config_get = sai_config_get,
.trigger = sai_trigger,
.get_properties = sai_get_properties,
.probe = sai_probe,
.remove = sai_remove,
};
static int sai_init(const struct device *dev)
{
const struct sai_config *cfg;
struct sai_data *data;
int i, ret;
cfg = dev->config;
data = dev->data;
device_map(&data->regmap, cfg->regmap_phys, cfg->regmap_size, K_MEM_CACHE_NONE);
/* enable clocks if any */
for (i = 0; i < cfg->clk_data.clock_num; i++) {
ret = clock_control_on(cfg->clk_data.dev,
UINT_TO_POINTER(cfg->clk_data.clocks[i]));
if (ret < 0) {
return ret;
}
LOG_DBG("clock %s has been ungated", cfg->clk_data.clock_names[i]);
}
/* note: optional operation so -ENOENT is allowed (i.e: we
* allow the default state to not be defined)
*/
ret = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
if (ret < 0 && ret != -ENOENT) {
return ret;
}
/* set TX/RX default states */
data->tx_state = DAI_STATE_NOT_READY;
data->rx_state = DAI_STATE_NOT_READY;
/* register ISR and enable IRQ */
cfg->irq_config();
return 0;
}
#define SAI_INIT(inst) \
\
PINCTRL_DT_INST_DEFINE(inst); \
\
BUILD_ASSERT(SAI_FIFO_DEPTH(inst) > 0 && \
SAI_FIFO_DEPTH(inst) <= _SAI_FIFO_DEPTH(inst), \
"invalid FIFO depth"); \
\
BUILD_ASSERT(SAI_RX_FIFO_WATERMARK(inst) > 0 && \
SAI_RX_FIFO_WATERMARK(inst) <= _SAI_FIFO_DEPTH(inst), \
"invalid RX FIFO watermark"); \
\
BUILD_ASSERT(SAI_TX_FIFO_WATERMARK(inst) > 0 && \
SAI_TX_FIFO_WATERMARK(inst) <= _SAI_FIFO_DEPTH(inst), \
"invalid TX FIFO watermark"); \
\
BUILD_ASSERT(IS_ENABLED(CONFIG_SAI_HAS_MCLK_CONFIG_OPTION) || \
!DT_INST_PROP(inst, mclk_is_output), \
"SAI doesn't support MCLK config but mclk_is_output is specified");\
\
BUILD_ASSERT(SAI_TX_SYNC_MODE(inst) != SAI_RX_SYNC_MODE(inst) || \
SAI_TX_SYNC_MODE(inst) != kSAI_ModeSync, \
"transmitter and receiver can't be both SYNC with each other"); \
\
BUILD_ASSERT(SAI_DLINE_COUNT(inst) != -1, \
"bad or unsupported SAI instance. Is the base address correct?"); \
\
BUILD_ASSERT(SAI_TX_DLINE_INDEX(inst) >= 0 && \
(SAI_TX_DLINE_INDEX(inst) < SAI_DLINE_COUNT(inst)), \
"invalid TX data line index"); \
\
BUILD_ASSERT(SAI_RX_DLINE_INDEX(inst) >= 0 && \
(SAI_RX_DLINE_INDEX(inst) < SAI_DLINE_COUNT(inst)), \
"invalid RX data line index"); \
\
static const struct dai_properties sai_tx_props_##inst = { \
.fifo_address = SAI_TX_FIFO_BASE(inst, SAI_TX_DLINE_INDEX(inst)), \
.fifo_depth = SAI_FIFO_DEPTH(inst) * CONFIG_SAI_FIFO_WORD_SIZE, \
.dma_hs_id = SAI_TX_RX_DMA_HANDSHAKE(inst, tx), \
}; \
\
static const struct dai_properties sai_rx_props_##inst = { \
.fifo_address = SAI_RX_FIFO_BASE(inst, SAI_RX_DLINE_INDEX(inst)), \
.fifo_depth = SAI_FIFO_DEPTH(inst) * CONFIG_SAI_FIFO_WORD_SIZE, \
.dma_hs_id = SAI_TX_RX_DMA_HANDSHAKE(inst, rx), \
}; \
\
void irq_config_##inst(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(inst), \
0, \
sai_isr, \
DEVICE_DT_INST_GET(inst), \
0); \
irq_enable(DT_INST_IRQN(inst)); \
} \
\
static struct sai_config sai_config_##inst = { \
.regmap_phys = DT_INST_REG_ADDR(inst), \
.regmap_size = DT_INST_REG_SIZE(inst), \
.clk_data = SAI_CLOCK_DATA_DECLARE(inst), \
.rx_fifo_watermark = SAI_RX_FIFO_WATERMARK(inst), \
.tx_fifo_watermark = SAI_TX_FIFO_WATERMARK(inst), \
.mclk_is_output = DT_INST_PROP(inst, mclk_is_output), \
.tx_props = &sai_tx_props_##inst, \
.rx_props = &sai_rx_props_##inst, \
.irq_config = irq_config_##inst, \
.tx_sync_mode = SAI_TX_SYNC_MODE(inst), \
.rx_sync_mode = SAI_RX_SYNC_MODE(inst), \
.tx_dline = SAI_TX_DLINE_INDEX(inst), \
.rx_dline = SAI_RX_DLINE_INDEX(inst), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst), \
}; \
\
static struct sai_data sai_data_##inst = { \
.cfg.type = DAI_IMX_SAI, \
.cfg.dai_index = DT_INST_PROP_OR(inst, dai_index, 0), \
}; \
\
DEVICE_DT_INST_DEFINE(inst, &sai_init, NULL, \
&sai_data_##inst, &sai_config_##inst, \
POST_KERNEL, CONFIG_DAI_INIT_PRIORITY, \
&sai_api); \
DT_INST_FOREACH_STATUS_OKAY(SAI_INIT);