zephyr/arch/arc/core/fault.c

87 lines
2.1 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Common fault handler for ARCv2
*
* Common fault handler for ARCv2 processors.
*/
#include <toolchain.h>
#include <linker/sections.h>
#include <inttypes.h>
#include <kernel.h>
kernel/arch: consolidate tTCS and TNANO definitions There was a lot of duplication between architectures for the definition of threads and the "nanokernel" guts. These have been consolidated. Now, a common file kernel/unified/include/kernel_structs.h holds the common definitions. Architectures provide two files to complement it: kernel_arch_data.h and kernel_arch_func.h. The first one contains at least the struct _thread_arch and struct _kernel_arch data structures, as well as the struct _callee_saved and struct _caller_saved register layouts. The second file contains anything that needs what is provided by the common stuff in kernel_structs.h. Those two files are only meant to be included in kernel_structs.h in very specific locations. The thread data structure has been separated into three major parts: common struct _thread_base and struct k_thread, and arch-specific struct _thread_arch. The first and third ones are included in the second. The struct s_NANO data structure has been split into two: common struct _kernel and arch-specific struct _kernel_arch. The latter is included in the former. Offsets files have also changed: nano_offsets.h has been renamed kernel_offsets.h and is still included by the arch-specific offsets.c. Also, since the thread and kernel data structures are now made of sub-structures, offsets have to be added to make up the full offset. Some of these additions have been consolidated in shorter symbols, available from kernel/unified/include/offsets_short.h, which includes an arch-specific offsets_arch_short.h. Most of the code include offsets_short.h now instead of offsets.h. Change-Id: I084645cb7e6db8db69aeaaf162963fe157045d5a Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-11-08 10:36:50 -05:00
#include <kernel_structs.h>
#include <misc/printk.h>
#include <exc_handle.h>
#include <logging/log_ctrl.h>
#ifdef CONFIG_USERSPACE
Z_EXC_DECLARE(z_arch_user_string_nlen);
static const struct z_exc_handle exceptions[] = {
Z_EXC_HANDLE(z_arch_user_string_nlen)
};
#endif
/*
* @brief Fault handler
*
* This routine is called when fatal error conditions are detected by hardware
* and is responsible only for reporting the error. Once reported, it then
* invokes the user provided routine z_SysFatalErrorHandler() which is
* responsible for implementing the error handling policy.
*/
void _Fault(NANO_ESF *esf)
{
u32_t vector, code, parameter;
u32_t exc_addr = z_arc_v2_aux_reg_read(_ARC_V2_EFA);
u32_t ecr = z_arc_v2_aux_reg_read(_ARC_V2_ECR);
LOG_PANIC();
#ifdef CONFIG_USERSPACE
for (int i = 0; i < ARRAY_SIZE(exceptions); i++) {
u32_t start = (u32_t)exceptions[i].start;
u32_t end = (u32_t)exceptions[i].end;
if (esf->pc >= start && esf->pc < end) {
esf->pc = (u32_t)(exceptions[i].fixup);
return;
}
}
#endif
vector = _ARC_V2_ECR_VECTOR(ecr);
code = _ARC_V2_ECR_CODE(ecr);
parameter = _ARC_V2_ECR_PARAMETER(ecr);
/* exception raised by kernel */
if (vector == 0x9 && parameter == _TRAP_S_CALL_RUNTIME_EXCEPT) {
z_NanoFatalErrorHandler(esf->r0, esf);
return;
}
printk("Exception vector: 0x%x, cause code: 0x%x, parameter 0x%x\n",
vector, code, parameter);
printk("Address 0x%x\n", exc_addr);
#ifdef CONFIG_ARC_STACK_CHECKING
/* Vector 6 = EV_ProV. Regardless of code, parameter 2 means stack
* check violation
* stack check and mpu violation can come out together, then
* parameter = 0x2 | [0x4 | 0x8 | 0x1]
*/
if (vector == 6U && parameter & 0x2) {
z_NanoFatalErrorHandler(_NANO_ERR_STACK_CHK_FAIL, esf);
return;
}
#endif
z_NanoFatalErrorHandler(_NANO_ERR_HW_EXCEPTION, esf);
}