zephyr/net/bluetooth/smp.c

1679 lines
37 KiB
C
Raw Normal View History

/**
* @file smp.c
* Security Manager Protocol implementation
*/
/*
* Copyright (c) 2015 Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <stddef.h>
#include <errno.h>
#include <string.h>
#include <misc/util.h>
#include <misc/byteorder.h>
#include <bluetooth/log.h>
#include <bluetooth/hci.h>
#include <bluetooth/bluetooth.h>
#include "hci_core.h"
#include "keys.h"
#include "conn_internal.h"
#include "l2cap.h"
#include "smp.h"
#define RECV_KEYS (BT_SMP_DIST_ID_KEY | BT_SMP_DIST_ENC_KEY | BT_SMP_DIST_SIGN)
#define SEND_KEYS (BT_SMP_DIST_ENC_KEY | BT_SMP_DIST_SIGN)
/* SMP channel specific context */
struct bt_smp {
/* The connection this context is associated with */
struct bt_conn *conn;
/* Commands that remote is allowed to send */
atomic_t allowed_cmds;
/* If we're waiting for an encryption change event */
bool pending_encrypt;
/* Pairing Request PDU */
uint8_t preq[7];
/* Pairing Response PDU */
uint8_t prsp[7];
/* Pairing Confirm PDU */
uint8_t pcnf[16];
/* Local random number */
uint8_t prnd[16];
/* Remote random number */
uint8_t rrnd[16];
/* Temporary key */
uint8_t tk[16];
/* Local key distribution */
uint8_t local_dist;
/* Remote key distribution */
uint8_t remote_dist;
};
static struct bt_smp bt_smp_pool[CONFIG_BLUETOOTH_MAX_CONN];
static const struct bt_auth_cb *auth_cb;
static uint8_t bt_smp_io_capa = BT_SMP_IO_NO_INPUT_OUTPUT;
#if defined(CONFIG_BLUETOOTH_DEBUG_SMP)
/* Helper for printk parameters to convert from binary to hex.
* We declare multiple buffers so the helper can be used multiple times
* in a single printk call.
*/
static const char *h(const void *buf, size_t len)
{
static const char hex[] = "0123456789abcdef";
static char hexbufs[4][129];
static uint8_t curbuf;
const uint8_t *b = buf;
char *str;
int i;
str = hexbufs[curbuf++];
curbuf %= ARRAY_SIZE(hexbufs);
len = min(len, (sizeof(hexbufs[0]) - 1) / 2);
for (i = 0; i < len; i++) {
str[i * 2] = hex[b[i] >> 4];
str[i * 2 + 1] = hex[b[i] & 0xf];
}
str[i * 2] = '\0';
return str;
}
#else
#undef BT_DBG
#define BT_DBG(fmt, ...)
#endif
typedef struct {
uint64_t a;
uint64_t b;
} uint128_t;
static void xor_128(const uint128_t *p, const uint128_t *q, uint128_t *r)
{
r->a = p->a ^ q->a;
r->b = p->b ^ q->b;
}
static int le_encrypt(const uint8_t key[16], const uint8_t plaintext[16],
uint8_t enc_data[16])
{
struct bt_hci_cp_le_encrypt *cp;
struct bt_hci_rp_le_encrypt *rp;
struct bt_buf *buf, *rsp;
int err;
BT_DBG("key %s plaintext %s\n", h(key, 16), h(plaintext, 16));
buf = bt_hci_cmd_create(BT_HCI_OP_LE_ENCRYPT, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = bt_buf_add(buf, sizeof(*cp));
memcpy(cp->key, key, sizeof(cp->key));
memcpy(cp->plaintext, plaintext, sizeof(cp->plaintext));
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_ENCRYPT, buf, &rsp);
if (err) {
return err;
}
rp = (void *)rsp->data;
memcpy(enc_data, rp->enc_data, sizeof(rp->enc_data));
bt_buf_put(rsp);
BT_DBG("enc_data %s\n", h(enc_data, 16));
return 0;
}
static int le_rand(void *buf, size_t len)
{
uint8_t *ptr = buf;
while (len > 0) {
struct bt_hci_rp_le_rand *rp;
struct bt_buf *rsp;
size_t copy;
int err;
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_RAND, NULL, &rsp);
if (err) {
BT_ERR("HCI_LE_Random failed (%d)\n", err);
return err;
}
rp = (void *)rsp->data;
copy = min(len, sizeof(rp->rand));
memcpy(ptr, rp->rand, copy);
bt_buf_put(rsp);
len -= copy;
ptr += copy;
}
return 0;
}
static int smp_ah(const uint8_t irk[16], const uint8_t r[3], uint8_t out[3])
{
uint8_t res[16];
int err;
BT_DBG("irk %s\n, r %s", h(irk, 16), h(r, 3));
/* r' = padding || r */
memcpy(res, r, 3);
memset(res + 3, 0, 13);
err = le_encrypt(irk, res, res);
if (err) {
return err;
}
/* The output of the random address function ah is:
* ah(h, r) = e(k, r') mod 2^24
* The output of the security function e is then truncated to 24 bits
* by taking the least significant 24 bits of the output of e as the
* result of ah.
*/
memcpy(out, res, 3);
return 0;
}
static int smp_c1(const uint8_t k[16], const uint8_t r[16],
const uint8_t preq[7], const uint8_t pres[7],
const bt_addr_le_t *ia, const bt_addr_le_t *ra,
uint8_t enc_data[16])
{
uint8_t p1[16], p2[16];
int err;
BT_DBG("k %s r %s\n", h(k, 16), h(r, 16));
BT_DBG("ia %s ra %s\n", bt_addr_le_str(ia), bt_addr_le_str(ra));
BT_DBG("preq %s pres %s\n", h(preq, 7), h(pres, 7));
/* pres, preq, rat and iat are concatenated to generate p1 */
p1[0] = ia->type;
p1[1] = ra->type;
memcpy(p1 + 2, preq, 7);
memcpy(p1 + 9, pres, 7);
BT_DBG("p1 %s\n", h(p1, 16));
/* c1 = e(k, e(k, r XOR p1) XOR p2) */
/* Using enc_data as temporary output buffer */
xor_128((uint128_t *)r, (uint128_t *)p1, (uint128_t *)enc_data);
err = le_encrypt(k, enc_data, enc_data);
if (err) {
return err;
}
/* ra is concatenated with ia and padding to generate p2 */
memcpy(p2, ra->val, 6);
memcpy(p2 + 6, ia->val, 6);
memset(p2 + 12, 0, 4);
BT_DBG("p2 %s\n", h(p2, 16));
xor_128((uint128_t *)enc_data, (uint128_t *)p2, (uint128_t *)enc_data);
return le_encrypt(k, enc_data, enc_data);
}
static int smp_s1(const uint8_t k[16], const uint8_t r1[16],
const uint8_t r2[16], uint8_t out[16])
{
/* The most significant 64-bits of r1 are discarded to generate
* r1' and the most significant 64-bits of r2 are discarded to
* generate r2'.
* r1' is concatenated with r2' to generate r' which is used as
* the 128-bit input parameter plaintextData to security function e:
*
* r' = r1' || r2'
*/
memcpy(out, r2, 8);
memcpy(out + 8, r1, 8);
/* s1(k, r1 , r2) = e(k, r') */
return le_encrypt(k, out, out);
}
struct bt_buf *bt_smp_create_pdu(struct bt_conn *conn, uint8_t op, size_t len)
{
struct bt_smp_hdr *hdr;
struct bt_buf *buf;
buf = bt_l2cap_create_pdu(conn);
if (!buf) {
return NULL;
}
hdr = bt_buf_add(buf, sizeof(*hdr));
hdr->code = op;
return buf;
}
static void send_err_rsp(struct bt_conn *conn, uint8_t reason)
{
struct bt_smp_pairing_fail *rsp;
struct bt_buf *buf;
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_FAIL, sizeof(*rsp));
if (!buf) {
return;
}
rsp = bt_buf_add(buf, sizeof(*rsp));
rsp->reason = reason;
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
}
static int smp_init(struct bt_smp *smp)
{
struct bt_conn *conn = smp->conn;
/* Initialize SMP context */
memset(smp, 0, sizeof(*smp));
/* Generate local random number */
if (le_rand(smp->prnd, 16)) {
return BT_SMP_ERR_UNSPECIFIED;
}
BT_DBG("prnd %s\n", h(smp->prnd, 16));
smp->conn = conn;
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_PAIRING_FAIL);
return 0;
}
static uint8_t get_auth(uint8_t auth)
{
auth &= BT_SMP_AUTH_MASK;
auth &= ~(BT_SMP_AUTH_SC | BT_SMP_AUTH_KEYPRESS);
if (bt_smp_io_capa == BT_SMP_IO_NO_INPUT_OUTPUT) {
auth &= ~(BT_SMP_AUTH_MITM);
} else {
auth |= BT_SMP_AUTH_MITM;
}
return auth;
}
static uint8_t smp_request_tk(struct bt_conn *conn, uint8_t remote_io)
{
struct bt_smp *smp = conn->smp;
/* TODO for now keep it simple, should be refactored (eg with lookup
* table) when more capabilities options will be supported
*/
switch (bt_smp_io_capa) {
case BT_SMP_IO_DISPLAY_ONLY:
if (remote_io == BT_SMP_IO_KEYBOARD_DISPLAY ||
remote_io == BT_SMP_IO_KEYBOARD_ONLY) {
uint32_t passkey;
if (le_rand(&passkey, sizeof(passkey))) {
return BT_SMP_ERR_UNSPECIFIED;
}
passkey %= 1000000;
auth_cb->passkey_display(conn, passkey);
passkey = sys_cpu_to_le32(passkey);
memcpy(smp->tk, &passkey, sizeof(passkey));
}
break;
default:
break;
}
return 0;
}
static uint8_t smp_pairing_req(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing *req = (void *)buf->data;
struct bt_smp_pairing *rsp;
struct bt_buf *rsp_buf;
struct bt_smp *smp = conn->smp;
int ret;
BT_DBG("\n");
if ((req->max_key_size > BT_SMP_MAX_ENC_KEY_SIZE) ||
(req->max_key_size < BT_SMP_MIN_ENC_KEY_SIZE)) {
return BT_SMP_ERR_ENC_KEY_SIZE;
}
ret = smp_init(smp);
if (ret) {
return ret;
}
rsp_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_RSP, sizeof(*rsp));
if (!rsp_buf) {
return BT_SMP_ERR_UNSPECIFIED;
}
rsp = bt_buf_add(rsp_buf, sizeof(*rsp));
rsp->auth_req = get_auth(req->auth_req);
rsp->io_capability = bt_smp_io_capa;
rsp->oob_flag = BT_SMP_OOB_NOT_PRESENT;
rsp->max_key_size = req->max_key_size;
rsp->init_key_dist = (req->init_key_dist & RECV_KEYS);
rsp->resp_key_dist = (req->resp_key_dist & SEND_KEYS);
smp->local_dist = rsp->resp_key_dist;
smp->remote_dist = rsp->init_key_dist;
/* Store req/rsp for later use */
smp->preq[0] = BT_SMP_CMD_PAIRING_REQ;
memcpy(smp->preq + 1, req, sizeof(*req));
smp->prsp[0] = BT_SMP_CMD_PAIRING_RSP;
memcpy(smp->prsp + 1, rsp, sizeof(*rsp));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, rsp_buf);
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_PAIRING_CONFIRM);
return smp_request_tk(conn, req->io_capability);
}
int bt_smp_send_security_req(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
struct bt_smp_security_request *req;
struct bt_buf *req_buf;
BT_DBG("\n");
req_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_SECURITY_REQUEST,
sizeof(*req));
if (!req_buf) {
return -ENOBUFS;
}
req = bt_buf_add(req_buf, sizeof(*req));
req->auth_req = BT_SMP_AUTH_BONDING;
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, req_buf);
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_PAIRING_FAIL);
return 0;
}
int bt_smp_send_pairing_req(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
struct bt_smp_pairing *req;
struct bt_buf *req_buf;
BT_DBG("\n");
if (smp_init(smp)) {
return -ENOBUFS;
}
req_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_REQ, sizeof(*req));
if (!req_buf) {
return -ENOBUFS;
}
req = bt_buf_add(req_buf, sizeof(*req));
req->auth_req = get_auth(BT_SMP_AUTH_BONDING);
req->io_capability = bt_smp_io_capa;
req->oob_flag = BT_SMP_OOB_NOT_PRESENT;
req->max_key_size = BT_SMP_MAX_ENC_KEY_SIZE;
req->init_key_dist = SEND_KEYS;
req->resp_key_dist = RECV_KEYS;
smp->local_dist = SEND_KEYS;
smp->remote_dist = RECV_KEYS;
/* Store req for later use */
smp->preq[0] = BT_SMP_CMD_PAIRING_REQ;
memcpy(smp->preq + 1, req, sizeof(*req));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, req_buf);
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_PAIRING_RSP);
return 0;
}
static uint8_t smp_send_pairing_confirm(struct bt_conn *conn)
{
struct bt_smp_pairing_confirm *req;
struct bt_smp *smp = conn->smp;
const bt_addr_le_t *ra, *ia;
struct bt_buf *rsp_buf;
int err;
rsp_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_CONFIRM,
sizeof(*req));
if (!rsp_buf) {
return BT_SMP_ERR_UNSPECIFIED;
}
req = bt_buf_add(rsp_buf, sizeof(*req));
if (conn->role == BT_HCI_ROLE_MASTER) {
ra = &conn->dst;
ia = &conn->src;
} else {
ra = &conn->src;
ia = &conn->dst;
}
err = smp_c1(smp->tk, smp->prnd, smp->preq, smp->prsp, ia, ra,
req->val);
if (err) {
bt_buf_put(rsp_buf);
return BT_SMP_ERR_UNSPECIFIED;
}
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, rsp_buf);
return 0;
}
static uint8_t smp_pairing_rsp(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing *rsp = (void *)buf->data;
struct bt_smp *smp = conn->smp;
uint8_t ret;
BT_DBG("\n");
if ((rsp->max_key_size > BT_SMP_MAX_ENC_KEY_SIZE) ||
(rsp->max_key_size < BT_SMP_MIN_ENC_KEY_SIZE)) {
return BT_SMP_ERR_ENC_KEY_SIZE;
}
smp->local_dist &= rsp->init_key_dist;
smp->remote_dist &= rsp->resp_key_dist;
/* Store rsp for later use */
smp->prsp[0] = BT_SMP_CMD_PAIRING_RSP;
memcpy(smp->prsp + 1, rsp, sizeof(*rsp));
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_PAIRING_CONFIRM);
ret = smp_request_tk(conn, rsp->io_capability);
if (ret) {
return ret;
}
return smp_send_pairing_confirm(conn);
}
static uint8_t smp_send_pairing_random(struct bt_conn *conn)
{
struct bt_smp_pairing_random *req;
struct bt_buf *rsp_buf;
struct bt_smp *smp = conn->smp;
rsp_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_RANDOM,
sizeof(*req));
if (!rsp_buf) {
return BT_SMP_ERR_UNSPECIFIED;
}
req = bt_buf_add(rsp_buf, sizeof(*req));
memcpy(req->val, smp->prnd, sizeof(req->val));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, rsp_buf);
return 0;
}
static uint8_t smp_pairing_confirm(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing_confirm *req = (void *)buf->data;
struct bt_smp *smp = conn->smp;
BT_DBG("\n");
memcpy(smp->pcnf, req->val, sizeof(smp->pcnf));
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_PAIRING_RANDOM);
if (conn->role == BT_HCI_ROLE_SLAVE) {
return smp_send_pairing_confirm(conn);
}
return smp_send_pairing_random(conn);
}
static uint8_t smp_pairing_random(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing_random *req = (void *)buf->data;
const bt_addr_le_t *ra, *ia;
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
uint8_t cfm[16];
int err;
BT_DBG("\n");
memcpy(smp->rrnd, req->val, sizeof(smp->rrnd));
if (conn->role == BT_HCI_ROLE_MASTER) {
ra = &conn->dst;
ia = &conn->src;
} else {
ra = &conn->src;
ia = &conn->dst;
}
err = smp_c1(smp->tk, smp->rrnd, smp->preq, smp->prsp, ia, ra, cfm);
if (err) {
return BT_SMP_ERR_UNSPECIFIED;
}
BT_DBG("pcnf %s cfm %s\n", h(smp->pcnf, 16), h(cfm, 16));
if (memcmp(smp->pcnf, cfm, sizeof(smp->pcnf))) {
return BT_SMP_ERR_CONFIRM_FAILED;
}
if (conn->role == BT_HCI_ROLE_MASTER) {
uint8_t stk[16];
/* No need to store master STK */
err = smp_s1(smp->tk, smp->rrnd, smp->prnd, stk);
if (err) {
return BT_SMP_ERR_UNSPECIFIED;
}
/* Rand and EDiv are 0 for the STK */
if (bt_conn_le_start_encryption(conn, 0, 0, stk)) {
BT_ERR("Failed to start encryption\n");
return BT_SMP_ERR_UNSPECIFIED;
}
smp->pending_encrypt = true;
return 0;
}
keys = bt_keys_get_type(BT_KEYS_SLAVE_LTK, &conn->dst);
if (!keys) {
BT_ERR("Unable to create new keys\n");
return BT_SMP_ERR_UNSPECIFIED;
}
err = smp_s1(smp->tk, smp->prnd, smp->rrnd, keys->slave_ltk.val);
if (err) {
bt_keys_clear(keys, BT_KEYS_SLAVE_LTK);
return BT_SMP_ERR_UNSPECIFIED;
}
/* Rand and EDiv are 0 for the STK */
keys->slave_ltk.rand = 0;
keys->slave_ltk.ediv = 0;
BT_DBG("generated STK %s\n", h(keys->slave_ltk.val, 16));
smp->pending_encrypt = true;
smp_send_pairing_random(conn);
return 0;
}
static void smp_reset(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
atomic_set(&smp->allowed_cmds, 0);
if (conn->role == BT_HCI_ROLE_MASTER) {
atomic_set_bit(&smp->allowed_cmds,
BT_SMP_CMD_SECURITY_REQUEST);
} else {
atomic_set_bit(&smp->allowed_cmds,
BT_SMP_CMD_PAIRING_REQ);
}
}
static uint8_t smp_pairing_failed(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing_fail *req = (void *)buf->data;
BT_ERR("reason 0x%x\n", req->reason);
/* TODO report error
* for now this to avoid warning about unused variable when debugs are
* disabled
*/
ARG_UNUSED(req);
smp_reset(conn);
switch (bt_smp_io_capa) {
case BT_SMP_IO_DISPLAY_ONLY:
auth_cb->cancel(conn);
break;
default:
break;
}
/* return no error to avoid sending Pairing Failed in response */
return 0;
}
static void bt_smp_distribute_keys(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
struct bt_buf *buf;
keys = bt_keys_get_addr(&conn->dst);
if (!keys) {
BT_ERR("Unable to look up keys for %s\n",
bt_addr_le_str(&conn->dst));
return;
}
if (!smp->local_dist) {
bt_keys_clear(keys, BT_KEYS_ALL);
return;
}
if (smp->local_dist & BT_SMP_DIST_ENC_KEY) {
struct bt_smp_encrypt_info *info;
struct bt_smp_master_ident *ident;
bt_keys_add_type(keys, BT_KEYS_SLAVE_LTK);
le_rand(keys->slave_ltk.val, sizeof(keys->slave_ltk.val));
le_rand(&keys->slave_ltk.rand, sizeof(keys->slave_ltk.rand));
le_rand(&keys->slave_ltk.ediv, sizeof(keys->slave_ltk.ediv));
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_ENCRYPT_INFO,
sizeof(*info));
if (!buf) {
BT_ERR("Unable to allocate Encrypt Info buffer\n");
return;
}
info = bt_buf_add(buf, sizeof(*info));
memcpy(info->ltk, keys->slave_ltk.val, sizeof(info->ltk));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_MASTER_IDENT,
sizeof(*ident));
if (!buf) {
BT_ERR("Unable to allocate Master Ident buffer\n");
return;
}
ident = bt_buf_add(buf, sizeof(*ident));
ident->rand = keys->slave_ltk.rand;
ident->ediv = keys->slave_ltk.ediv;
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
}
if (smp->local_dist & BT_SMP_DIST_SIGN) {
struct bt_smp_signing_info *info;
bt_keys_add_type(keys, BT_KEYS_LOCAL_CSRK);
le_rand(keys->local_csrk.val, sizeof(keys->local_csrk.val));
keys->local_csrk.cnt = 0;
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_SIGNING_INFO,
sizeof(*info));
if (!buf) {
BT_ERR("Unable to allocate Signing Info buffer\n");
return;
}
info = bt_buf_add(buf, sizeof(*info));
memcpy(info->csrk, keys->local_csrk.val, sizeof(info->csrk));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
}
}
static uint8_t smp_encrypt_info(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_encrypt_info *req = (void *)buf->data;
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
BT_DBG("\n");
keys = bt_keys_get_type(BT_KEYS_LTK, &conn->dst);
if (!keys) {
BT_ERR("Unable to get keys for %s\n",
bt_addr_le_str(&conn->dst));
return BT_SMP_ERR_UNSPECIFIED;
}
memcpy(keys->ltk.val, req->ltk, 16);
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_MASTER_IDENT);
return 0;
}
static uint8_t smp_master_ident(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_master_ident *req = (void *)buf->data;
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
BT_DBG("\n");
keys = bt_keys_get_type(BT_KEYS_LTK, &conn->dst);
if (!keys) {
BT_ERR("Unable to get keys for %s\n",
bt_addr_le_str(&conn->dst));
return BT_SMP_ERR_UNSPECIFIED;
}
keys->ltk.ediv = req->ediv;
keys->ltk.rand = req->rand;
if (conn->role == BT_HCI_ROLE_MASTER) {
smp->remote_dist &= ~BT_SMP_DIST_ENC_KEY;
if (!smp->remote_dist) {
bt_smp_distribute_keys(conn);
return 0;
}
}
if (smp->remote_dist & BT_SMP_DIST_ID_KEY) {
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_IDENT_INFO);
} else if (smp->remote_dist & BT_SMP_DIST_SIGN) {
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_SIGNING_INFO);
}
return 0;
}
static uint8_t smp_ident_info(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_ident_info *req = (void *)buf->data;
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
BT_DBG("\n");
keys = bt_keys_get_type(BT_KEYS_IRK, &conn->dst);
if (!keys) {
BT_ERR("Unable to get keys for %s\n",
bt_addr_le_str(&conn->dst));
return BT_SMP_ERR_UNSPECIFIED;
}
memcpy(keys->irk.val, req->irk, 16);
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_IDENT_ADDR_INFO);
return 0;
}
static uint8_t smp_ident_addr_info(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_ident_addr_info *req = (void *)buf->data;
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
BT_DBG("\n");
BT_DBG("identity %s\n", bt_addr_le_str(&req->addr));
if (!bt_addr_le_is_identity(&req->addr)) {
BT_ERR("Invalid identity %s for %s\n",
bt_addr_le_str(&req->addr), bt_addr_le_str(&conn->dst));
return BT_SMP_ERR_INVALID_PARAMS;
}
keys = bt_keys_get_type(BT_KEYS_IRK, &conn->dst);
if (!keys) {
BT_ERR("Unable to get keys for %s\n",
bt_addr_le_str(&conn->dst));
return BT_SMP_ERR_UNSPECIFIED;
}
if (bt_addr_le_is_rpa(&conn->dst)) {
bt_addr_copy(&keys->irk.rpa, (bt_addr_t *)&conn->dst.val);
bt_addr_le_copy(&keys->addr, &req->addr);
bt_addr_le_copy(&conn->dst, &req->addr);
}
if (conn->role == BT_HCI_ROLE_MASTER) {
smp->remote_dist &= ~BT_SMP_DIST_ID_KEY;
if (!smp->remote_dist) {
bt_smp_distribute_keys(conn);
}
return 0;
}
if (smp->remote_dist & BT_SMP_DIST_SIGN) {
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_SIGNING_INFO);
}
return 0;
}
static uint8_t smp_signing_info(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_signing_info *req = (void *)buf->data;
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
BT_DBG("\n");
keys = bt_keys_get_type(BT_KEYS_REMOTE_CSRK, &conn->dst);
if (!keys) {
BT_ERR("Unable to get keys for %s\n",
bt_addr_le_str(&conn->dst));
return BT_SMP_ERR_UNSPECIFIED;
}
memcpy(keys->remote_csrk.val, req->csrk, sizeof(keys->remote_csrk.val));
if (conn->role == BT_HCI_ROLE_MASTER) {
smp->remote_dist &= ~BT_SMP_DIST_SIGN;
if (!smp->remote_dist) {
bt_smp_distribute_keys(conn);
}
}
return 0;
}
static uint8_t smp_security_request(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_security_request *req = (void *)buf->data;
struct bt_keys *keys;
uint8_t auth;
BT_DBG("\n");
keys = bt_keys_find(BT_KEYS_LTK, &conn->dst);
if (!keys) {
goto pair;
}
auth = req->auth_req & BT_SMP_AUTH_MASK;
if (auth & (BT_SMP_AUTH_MITM | BT_SMP_AUTH_SC)) {
BT_WARN("Unsupported auth requirements: 0x%x, repairing", auth);
goto pair;
}
if (bt_conn_le_start_encryption(conn, keys->ltk.rand, keys->ltk.ediv,
keys->ltk.val) < 0) {
return BT_SMP_ERR_UNSPECIFIED;
}
return 0;
pair:
if (bt_smp_send_pairing_req(conn) < 0) {
return BT_SMP_ERR_UNSPECIFIED;
}
return 0;
}
static const struct {
uint8_t (*func)(struct bt_conn *conn, struct bt_buf *buf);
uint8_t expect_len;
} handlers[] = {
{ }, /* No op-code defined for 0x00 */
{ smp_pairing_req, sizeof(struct bt_smp_pairing) },
{ smp_pairing_rsp, sizeof(struct bt_smp_pairing) },
{ smp_pairing_confirm, sizeof(struct bt_smp_pairing_confirm) },
{ smp_pairing_random, sizeof(struct bt_smp_pairing_random) },
{ smp_pairing_failed, sizeof(struct bt_smp_pairing_fail) },
{ smp_encrypt_info, sizeof(struct bt_smp_encrypt_info) },
{ smp_master_ident, sizeof(struct bt_smp_master_ident) },
{ smp_ident_info, sizeof(struct bt_smp_ident_info) },
{ smp_ident_addr_info, sizeof(struct bt_smp_ident_addr_info) },
{ smp_signing_info, sizeof(struct bt_smp_signing_info) },
{ smp_security_request, sizeof(struct bt_smp_security_request) },
};
static void bt_smp_recv(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_hdr *hdr = (void *)buf->data;
struct bt_smp *smp = conn->smp;
uint8_t err;
if (buf->len < sizeof(*hdr)) {
BT_ERR("Too small SMP PDU received\n");
goto done;
}
BT_DBG("Received SMP code 0x%02x len %u\n", hdr->code, buf->len);
bt_buf_pull(buf, sizeof(*hdr));
if (hdr->code >= ARRAY_SIZE(handlers) || !handlers[hdr->code].func) {
BT_WARN("Unhandled SMP code 0x%02x\n", hdr->code);
err = BT_SMP_ERR_CMD_NOTSUPP;
} else {
if (!atomic_test_and_clear_bit(&smp->allowed_cmds, hdr->code)) {
BT_WARN("Unexpected SMP code 0x%02x\n", hdr->code);
goto done;
}
if (buf->len != handlers[hdr->code].expect_len) {
BT_ERR("Invalid len %u for code 0x%02x\n", buf->len,
hdr->code);
err = BT_SMP_ERR_INVALID_PARAMS;
} else {
err = handlers[hdr->code].func(conn, buf);
}
}
if (err) {
send_err_rsp(conn, err);
smp_reset(conn);
}
done:
bt_buf_put(buf);
}
static void bt_smp_connected(struct bt_conn *conn)
{
int i;
BT_DBG("conn %p handle %u\n", conn, conn->handle);
for (i = 0; i < ARRAY_SIZE(bt_smp_pool); i++) {
struct bt_smp *smp = &bt_smp_pool[i];
if (smp->conn) {
continue;
}
smp->conn = conn;
conn->smp = smp;
smp_reset(conn);
return;
}
BT_ERR("No available SMP context for conn %p\n", conn);
}
static void bt_smp_disconnected(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
if (!smp) {
return;
}
BT_DBG("conn %p handle %u\n", conn, conn->handle);
conn->smp = NULL;
memset(smp, 0, sizeof(*smp));
}
static void bt_smp_encrypt_change(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
BT_DBG("conn %p handle %u encrypt 0x%02x\n", conn, conn->handle,
conn->encrypt);
if (!smp || !conn->encrypt) {
return;
}
if (!smp->pending_encrypt) {
return;
}
smp->pending_encrypt = false;
if (smp->remote_dist & BT_SMP_DIST_ENC_KEY) {
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_ENCRYPT_INFO);
} else if (smp->remote_dist & BT_SMP_DIST_ID_KEY) {
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_IDENT_INFO);
} else if (smp->remote_dist & BT_SMP_DIST_SIGN) {
atomic_set_bit(&smp->allowed_cmds, BT_SMP_CMD_SIGNING_INFO);
}
/* Slave distributes it's keys first */
if (conn->role == BT_HCI_ROLE_MASTER && smp->remote_dist) {
return;
}
bt_smp_distribute_keys(conn);
}
bool bt_smp_irk_matches(const uint8_t irk[16], const bt_addr_t *addr)
{
uint8_t hash[3];
int err;
BT_DBG("IRK %s bdaddr %s", h(irk, 16), bt_addr_str(addr));
err = smp_ah(irk, addr->val + 3, hash);
if (err) {
return false;
}
return !memcmp(addr->val, hash, 3);
}
/* spaw octets for LE encrypt */
static void swap_buf(const uint8_t *src, uint8_t *dst, uint16_t len)
{
int i;
for (i = 0; i < len; i++) {
dst[len - 1 - i] = src[i];
}
}
static void swap_in_place(uint8_t *buf, uint16_t len)
{
int i, j;
for (i = 0, j = len - 1; i < j; i++, j--) {
uint8_t tmp = buf[i];
buf[i] = buf[j];
buf[j] = tmp;
}
}
/* 1 bit left shift */
static void array_shift(const uint8_t *in, uint8_t *out)
{
uint8_t overflow = 0;
for (int i = 15; i >= 0; i--) {
out[i] = in[i] << 1;
/* previous byte */
out[i] |= overflow;
overflow = in[i] & 0x80 ? 1 : 0;
}
}
/* CMAC subkey generation algorithm */
static int cmac_subkey(const uint8_t *key, uint8_t *k1, uint8_t *k2)
{
const uint8_t rb[16] = {
[0 ... 14] = 0x00,
[15] = 0x87,
};
uint8_t zero[16] = { 0 }, *tmp = zero;
uint8_t l[16];
int err;
/* L := AES-128(K, const_Zero) */
err = le_encrypt(key, zero, tmp);
if (err) {
return err;
}
swap_buf(tmp, l, 16);
BT_DBG("l %s\n", h(l, 16));
/* if MSB(L) == 0 K1 = L << 1 */
if (!(l[0] & 0x80)) {
array_shift(l, k1);
/* else K1 = (L << 1) XOR rb */
} else {
array_shift(l, k1);
xor_128((uint128_t *)k1, (uint128_t *)rb, (uint128_t *)k1);
}
/* if MSB(K1) == 0 K2 = K1 << 1 */
if (!(k1[0] & 0x80)) {
array_shift(k1, k2);
/* else K2 = (K1 << 1) XOR rb */
} else {
array_shift(k1, k2);
xor_128((uint128_t *)k2, (uint128_t *)rb, (uint128_t *)k2);
}
return 0;
}
/* padding(x) = x || 10^i where i is 128 - 8 * r - 1 */
static void add_pad(const uint8_t *in, unsigned char *out, int len)
{
memset(out, 0, 16);
memcpy(out, in, len);
out[len] = 0x80;
}
/* Cypher based Message Authentication Code (CMAC) with AES 128 bit
*
* Input : key ( 128-bit key )
* : in ( message to be authenticated )
* : len ( length of the message in octets )
* Output : out ( message authentication code )
*/
static int bt_smp_aes_cmac(const uint8_t *key, const uint8_t *in, size_t len,
uint8_t *out)
{
uint8_t k1[16], k2[16], last_block[16], *pad_block = last_block;
uint8_t key_s[16];
uint8_t *x, *y;
uint8_t n, flag;
int err;
swap_buf(key, key_s, 16);
/* (K1,K2) = Generate_Subkey(K) */
err = cmac_subkey(key_s, k1, k2);
if (err) {
return err;
}
BT_DBG("key %s subkeys k1 %s k2 %s\n", h(key, 16), h(k1, 16),
h(k2, 16));
/* the number of blocks, n, is calculated, the block length is 16 bytes
* n = ceil(len/const_Bsize)
*/
n = (len + 15) / 16;
/* check input length, flag indicate completed blocks */
if (n == 0) {
/* if length is 0, the number of blocks to be processed shall
* be 1,and the flag shall be marked as not-complete-block
* false
*/
n = 1;
flag = 0;
} else {
if ((len % 16) == 0) {
/* complete blocks */
flag = 1;
} else {
/* last block is not complete */
flag = 0;
}
}
BT_DBG("len %u n %u flag %u\n", len, n, flag);
/* if flag is true then M_last = M_n XOR K1 */
if (flag) {
xor_128((uint128_t *)&in[16 * (n - 1)], (uint128_t *)k1,
(uint128_t *)last_block);
/* else M_last = padding(M_n) XOR K2 */
} else {
add_pad(&in[16 * (n - 1)], pad_block, len % 16);
xor_128((uint128_t *)pad_block, (uint128_t *)k2,
(uint128_t *)last_block);
}
/* Reuse k1 and k2 buffers */
x = k1;
y = k2;
/* Zeroing x */
memset(x, 0, 16);
/* the basic CBC-MAC is applied to M_1,...,M_{n-1},M_last */
for (int i = 0; i < n - 1; i++) {
/* Y = X XOR M_i */
xor_128((uint128_t *)x, (uint128_t *)&in[i * 16],
(uint128_t *)y);
swap_in_place(y, 16);
/* X = AES-128(K,Y) */
err = le_encrypt(key_s, y, x);
if (err) {
return err;
}
swap_in_place(x, 16);
}
/* Y = M_last XOR X */
xor_128((uint128_t *)x, (uint128_t *)last_block, (uint128_t *)y);
swap_in_place(y, 16);
/* T = AES-128(K,Y) */
err = le_encrypt(key_s, y, out);
swap_in_place(out, 16);
return err;
}
/* Sign message using msg as a buffer, len is a size of the message,
* msg buffer contains message itself, 32 bit count and signature,
* so total buffer size is len + 4 + 8 octets.
* API is Little Endian to make it suitable for Bluetooth.
*/
static int smp_sign_buf(const uint8_t *key, uint8_t *msg, uint16_t len)
{
uint8_t *m = msg;
uint32_t cnt = UNALIGNED_GET((uint32_t *)&msg[len]);
uint8_t *sig = msg + len;
uint8_t key_s[16], tmp[16];
int err;
BT_DBG("Signing msg %s len %u key %s\n", h(msg, len), len, h(key, 16));
swap_in_place(m, len + sizeof(cnt));
swap_buf(key, key_s, 16);
err = bt_smp_aes_cmac(key_s, m, len + sizeof(cnt), tmp);
if (err) {
BT_ERR("Data signing failed\n");
return err;
}
swap_in_place(tmp, sizeof(tmp));
memcpy(tmp + 4, &cnt, sizeof(cnt));
/* Swap original message back */
swap_in_place(m, len + sizeof(cnt));
memcpy(sig, tmp + 4, 12);
BT_DBG("sig %s\n", h(sig, 12));
return 0;
}
int bt_smp_sign_verify(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_keys *keys;
uint8_t sig[12];
uint32_t cnt;
int err;
/* Store signature incl. count */
memcpy(sig, bt_buf_tail(buf) - sizeof(sig), sizeof(sig));
keys = bt_keys_get_type(BT_KEYS_REMOTE_CSRK, &conn->dst);
if (!keys) {
BT_ERR("Unable to get keys for %s\n",
bt_addr_le_str(&conn->dst));
return -ENOENT;
}
/* Copy signing count */
cnt = sys_cpu_to_le32(keys->remote_csrk.cnt);
memcpy(bt_buf_tail(buf) - sizeof(sig), &cnt, sizeof(cnt));
BT_DBG("Sign data len %u key %s count %u\n", buf->len - sizeof(sig),
h(keys->remote_csrk.val, 16), cnt);
err = smp_sign_buf(keys->remote_csrk.val, buf->data,
buf->len - sizeof(sig));
if (err) {
BT_ERR("Unable to create signature for %s\n",
bt_addr_le_str(&conn->dst));
return -EIO;
};
if (memcmp(sig, bt_buf_tail(buf) - sizeof(sig), sizeof(sig))) {
BT_ERR("Unable to verify signature for %s\n",
bt_addr_le_str(&conn->dst));
return -EBADMSG;
};
return 0;
}
int bt_smp_sign(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_keys *keys;
uint32_t cnt;
int err;
keys = bt_keys_get_type(BT_KEYS_LOCAL_CSRK, &conn->dst);
if (!keys) {
BT_ERR("Unable to get keys for %s\n",
bt_addr_le_str(&conn->dst));
return -ENOENT;
}
/* Reserve space for data signature */
bt_buf_add(buf, 12);
/* Copy signing count */
cnt = sys_cpu_to_le32(keys->local_csrk.cnt);
memcpy(bt_buf_tail(buf) - 12, &cnt, sizeof(cnt));
BT_DBG("Sign data len %u key %s count %u\n", buf->len,
h(keys->local_csrk.val, 16), keys->local_csrk.cnt);
err = smp_sign_buf(keys->local_csrk.val, buf->data, buf->len - 12);
if (err) {
BT_ERR("Unable to create signature for %s\n",
bt_addr_le_str(&conn->dst));
return -EIO;
};
keys->local_csrk.cnt++;
return 0;
}
#if defined(CONFIG_BLUETOOTH_SMP_SELFTEST)
/* Test vectors are taken from RFC 4493
* https://tools.ietf.org/html/rfc4493
* Same mentioned in the Bluetooth Spec.
*/
static const uint8_t key[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c
};
static const uint8_t M[] = {
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10
};
static int aes_test(const char *prefix, const uint8_t *key, const uint8_t *m,
uint16_t len, const uint8_t *mac)
{
uint8_t out[16];
BT_DBG("%s: AES CMAC of message with len %u\n", prefix, len);
bt_smp_aes_cmac(key, m, len, out);
if (!memcmp(out, mac, 16)) {
BT_DBG("%s: Success\n", prefix);
} else {
BT_ERR("%s: Failed\n", prefix);
return -1;
}
return 0;
}
static int smp_aes_cmac_test(void)
{
uint8_t mac1[] = {
0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28,
0x7f, 0xa3, 0x7d, 0x12, 0x9b, 0x75, 0x67, 0x46
};
uint8_t mac2[] = {
0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44,
0xf7, 0x9b, 0xdd, 0x9d, 0xd0, 0x4a, 0x28, 0x7c
};
uint8_t mac3[] = {
0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30,
0x30, 0xca, 0x32, 0x61, 0x14, 0x97, 0xc8, 0x27
};
uint8_t mac4[] = {
0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92,
0xfc, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3c, 0xfe
};
int err;
err = aes_test("Test aes-cmac0", key, M, 0, mac1);
if (err) {
return err;
}
err = aes_test("Test aes-cmac16", key, M, 16, mac2);
if (err) {
return err;
}
err = aes_test("Test aes-cmac40", key, M, 40, mac3);
if (err) {
return err;
}
err = aes_test("Test aes-cmac64", key, M, 64, mac4);
if (err) {
return err;
}
return 0;
}
static int sign_test(const char *prefix, const uint8_t *key, const uint8_t *m,
uint16_t len, const uint8_t *sig)
{
uint8_t msg[len + sizeof(uint32_t) + 8];
uint8_t orig[len + sizeof(uint32_t) + 8];
uint8_t *out = msg + len;
int err;
BT_DBG("%s: Sign message with len %u\n", prefix, len);
memset(msg, 0, sizeof(msg));
memcpy(msg, m, len);
memset(msg + len, 0, sizeof(uint32_t));
memcpy(orig, msg, sizeof(msg));
err = smp_sign_buf(key, msg, len);
if (err) {
return err;
}
/* Check original message */
if (!memcmp(msg, orig, len + sizeof(uint32_t))) {
BT_DBG("%s: Original message intact\n", prefix);
} else {
BT_ERR("%s: Original message modified\n", prefix);
BT_DBG("%s: orig %s\n", prefix, h(orig, sizeof(orig)));
BT_DBG("%s: msg %s\n", prefix, h(msg, sizeof(msg)));
return -1;
}
if (!memcmp(out, sig, 12)) {
BT_DBG("%s: Success\n", prefix);
} else {
BT_ERR("%s: Failed\n", prefix);
return -1;
}
return 0;
}
static int smp_sign_test(void)
{
const uint8_t sig1[] = {
0x00, 0x00, 0x00, 0x00, 0xb3, 0xa8, 0x59, 0x41,
0x27, 0xeb, 0xc2, 0xc0
};
const uint8_t sig2[] = {
0x00, 0x00, 0x00, 0x00, 0x27, 0x39, 0x74, 0xf4,
0x39, 0x2a, 0x23, 0x2a
};
const uint8_t sig3[] = {
0x00, 0x00, 0x00, 0x00, 0xb7, 0xca, 0x94, 0xab,
0x87, 0xc7, 0x82, 0x18
};
const uint8_t sig4[] = {
0x00, 0x00, 0x00, 0x00, 0x44, 0xe1, 0xe6, 0xce,
0x1d, 0xf5, 0x13, 0x68
};
uint8_t key_s[16];
int err;
/* Use the same key as aes-cmac but swap bytes */
swap_buf(key, key_s, 16);
err = sign_test("Test sign0", key_s, M, 0, sig1);
if (err) {
return err;
}
err = sign_test("Test sign16", key_s, M, 16, sig2);
if (err) {
return err;
}
err = sign_test("Test sign40", key_s, M, 40, sig3);
if (err) {
return err;
}
err = sign_test("Test sign64", key_s, M, 64, sig4);
if (err) {
return err;
}
return 0;
}
static int smp_self_test(void)
{
int err;
err = smp_aes_cmac_test();
if (err) {
BT_ERR("SMP AES-CMAC self tests failed\n");
return err;
}
err = smp_sign_test();
if (err) {
BT_ERR("SMP signing self tests failed\n");
return err;
}
return 0;
}
#else
static inline int smp_self_test(void)
{
return 0;
}
#endif
static uint8_t get_io_capa(const struct bt_auth_cb *cb)
{
if (auth_cb->passkey_display) {
return BT_SMP_IO_DISPLAY_ONLY;
}
return BT_SMP_IO_NO_INPUT_OUTPUT;
}
int bt_auth_cb_register(const struct bt_auth_cb *cb)
{
if (!cb) {
bt_smp_io_capa = BT_SMP_IO_NO_INPUT_OUTPUT;
auth_cb = NULL;
return 0;
}
/* cancel callback should always be provided */
if (!cb->cancel) {
return -EINVAL;
}
if (auth_cb) {
return -EALREADY;
}
bt_smp_io_capa = get_io_capa(cb);
auth_cb = cb;
return 0;
}
void bt_auth_cancel(struct bt_conn *conn)
{
send_err_rsp(conn, BT_SMP_ERR_PASSKEY_ENTRY_FAILED);
smp_reset(conn);
}
int bt_smp_init(void)
{
static struct bt_l2cap_chan chan = {
.cid = BT_L2CAP_CID_SMP,
.recv = bt_smp_recv,
.connected = bt_smp_connected,
.disconnected = bt_smp_disconnected,
.encrypt_change = bt_smp_encrypt_change,
};
bt_l2cap_chan_register(&chan);
return smp_self_test();
}