zephyr/net/bluetooth/conn.c

743 lines
16 KiB
C
Raw Normal View History

/* conn.c - Bluetooth connection handling */
/*
* Copyright (c) 2015 Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <toolchain.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <atomic.h>
#include <misc/byteorder.h>
#include <misc/util.h>
#include <bluetooth/log.h>
#include <bluetooth/hci.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/driver.h>
#include "hci_core.h"
#include "conn_internal.h"
#include "l2cap.h"
#include "keys.h"
#include "smp.h"
#if !defined(CONFIG_BLUETOOTH_DEBUG_CONN)
#undef BT_DBG
#define BT_DBG(fmt, ...)
#endif
/* How long until we cancel HCI_LE_Create_Connection */
#define CONN_TIMEOUT (3 * sys_clock_ticks_per_sec)
static struct bt_conn conns[CONFIG_BLUETOOTH_MAX_CONN];
static struct bt_conn_cb *callback_list;
#if defined(CONFIG_BLUETOOTH_DEBUG_CONN)
static const char *state2str(bt_conn_state_t state)
{
switch (state) {
case BT_CONN_DISCONNECTED:
return "disconnected";
case BT_CONN_CONNECT_SCAN:
return "connect-scan";
case BT_CONN_CONNECT:
return "connect";
case BT_CONN_CONNECTED:
return "connected";
case BT_CONN_DISCONNECT:
return "disconnect";
default:
return "(unknown)";
}
}
#endif
void bt_conn_connected(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->connected) {
cb->connected(conn);
}
}
}
static void bt_conn_disconnected(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->disconnected) {
cb->disconnected(conn);
}
}
}
void bt_conn_identity_resolved(struct bt_conn *conn)
{
const bt_addr_le_t *rpa;
struct bt_conn_cb *cb;
if (conn->role == BT_HCI_ROLE_MASTER) {
rpa = &conn->resp_addr;
} else {
rpa = &conn->init_addr;
}
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->identity_resolved) {
cb->identity_resolved(conn, rpa, &conn->dst);
}
}
}
void bt_conn_security_changed(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->security_changed) {
cb->security_changed(conn, conn->sec_level);
}
}
}
void bt_conn_cb_register(struct bt_conn_cb *cb)
{
cb->_next = callback_list;
callback_list = cb;
}
static void bt_conn_reset_rx_state(struct bt_conn *conn)
{
if (!conn->rx_len) {
return;
}
bt_buf_put(conn->rx);
conn->rx = NULL;
conn->rx_len = 0;
}
void bt_conn_recv(struct bt_conn *conn, struct bt_buf *buf, uint8_t flags)
{
struct bt_l2cap_hdr *hdr;
uint16_t len;
BT_DBG("handle %u len %u flags %02x\n", conn->handle, buf->len, flags);
/* Check packet boundary flags */
switch (flags) {
case 0x02:
/* First packet */
hdr = (void *)buf->data;
len = sys_le16_to_cpu(hdr->len);
BT_DBG("First, len %u final %u\n", buf->len, len);
if (conn->rx_len) {
BT_ERR("Unexpected first L2CAP frame\n");
bt_conn_reset_rx_state(conn);
}
conn->rx_len = (sizeof(*hdr) + len) - buf->len;
BT_DBG("rx_len %u\n", conn->rx_len);
if (conn->rx_len) {
conn->rx = buf;
return;
}
break;
case 0x01:
/* Continuation */
if (!conn->rx_len) {
BT_ERR("Unexpected L2CAP continuation\n");
bt_conn_reset_rx_state(conn);
bt_buf_put(buf);
return;
}
if (buf->len > conn->rx_len) {
BT_ERR("L2CAP data overflow\n");
bt_conn_reset_rx_state(conn);
bt_buf_put(buf);
return;
}
BT_DBG("Cont, len %u rx_len %u\n", buf->len, conn->rx_len);
if (buf->len > bt_buf_tailroom(conn->rx)) {
BT_ERR("Not enough buffer space for L2CAP data\n");
bt_conn_reset_rx_state(conn);
bt_buf_put(buf);
return;
}
memcpy(bt_buf_add(conn->rx, buf->len), buf->data, buf->len);
conn->rx_len -= buf->len;
bt_buf_put(buf);
if (conn->rx_len) {
return;
}
buf = conn->rx;
conn->rx = NULL;
conn->rx_len = 0;
break;
default:
BT_ERR("Unexpected ACL flags (0x%02x)\n", flags);
bt_conn_reset_rx_state(conn);
bt_buf_put(buf);
return;
}
hdr = (void *)buf->data;
len = sys_le16_to_cpu(hdr->len);
if (sizeof(*hdr) + len != buf->len) {
BT_ERR("ACL len mismatch (%u != %u)\n", len, buf->len);
bt_buf_put(buf);
return;
}
BT_DBG("Successfully parsed %u byte L2CAP packet\n", buf->len);
bt_l2cap_recv(conn, buf);
}
void bt_conn_send(struct bt_conn *conn, struct bt_buf *buf)
{
uint16_t len, remaining = buf->len;
struct bt_hci_acl_hdr *hdr;
struct nano_fifo frags;
uint8_t *ptr;
BT_DBG("conn handle %u buf len %u\n", conn->handle, buf->len);
if (conn->state != BT_CONN_CONNECTED) {
BT_ERR("not connected!\n");
return;
}
nano_fifo_init(&frags);
len = min(remaining, bt_dev.le_mtu);
hdr = bt_buf_push(buf, sizeof(*hdr));
hdr->handle = sys_cpu_to_le16(conn->handle);
hdr->len = sys_cpu_to_le16(len);
buf->len -= remaining - len;
ptr = bt_buf_tail(buf);
nano_fifo_put(&frags, buf);
remaining -= len;
while (remaining) {
buf = bt_l2cap_create_pdu(conn);
len = min(remaining, bt_dev.le_mtu);
/* Copy from original buffer */
memcpy(bt_buf_add(buf, len), ptr, len);
ptr += len;
hdr = bt_buf_push(buf, sizeof(*hdr));
hdr->handle = sys_cpu_to_le16(conn->handle | (1 << 12));
hdr->len = sys_cpu_to_le16(len);
nano_fifo_put(&frags, buf);
remaining -= len;
}
while ((buf = nano_fifo_get(&frags))) {
nano_fifo_put(&conn->tx_queue, buf);
}
}
static void conn_tx_fiber(int arg1, int arg2)
{
struct bt_conn *conn = (struct bt_conn *)arg1;
struct bt_buf *buf;
BT_DBG("Started for handle %u\n", conn->handle);
while (conn->state == BT_CONN_CONNECTED) {
int err;
/* Wait until the controller can accept ACL packets */
BT_DBG("calling sem_take_wait\n");
nano_fiber_sem_take_wait(&bt_dev.le_pkts_sem);
/* check for disconnection */
if (conn->state != BT_CONN_CONNECTED) {
nano_fiber_sem_give(&bt_dev.le_pkts_sem);
break;
}
/* Get next ACL packet for connection */
buf = nano_fifo_get_wait(&conn->tx_queue);
if (conn->state != BT_CONN_CONNECTED) {
nano_fiber_sem_give(&bt_dev.le_pkts_sem);
bt_buf_put(buf);
break;
}
BT_DBG("passing buf %p len %u to driver\n", buf, buf->len);
err = bt_dev.drv->send(buf);
if (err) {
BT_ERR("Unable to send to driver (err %d)\n", err);
} else {
conn->pending_pkts++;
}
bt_buf_put(buf);
}
BT_DBG("handle %u disconnected - cleaning up\n", conn->handle);
/* Give back any allocated buffers */
while ((buf = nano_fifo_get(&conn->tx_queue))) {
bt_buf_put(buf);
}
/* Return any unacknowledged packets */
if (conn->pending_pkts) {
while (conn->pending_pkts--) {
nano_fiber_sem_give(&bt_dev.le_pkts_sem);
}
}
bt_conn_reset_rx_state(conn);
BT_DBG("handle %u exiting\n", conn->handle);
bt_conn_put(conn);
}
struct bt_conn *bt_conn_add(const bt_addr_le_t *peer)
{
struct bt_conn *conn = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
conn = &conns[i];
break;
}
}
if (!conn) {
return NULL;
}
memset(conn, 0, sizeof(*conn));
atomic_set(&conn->ref, 1);
bt_addr_le_copy(&conn->dst, peer);
conn->sec_level = BT_SECURITY_LOW;
conn->required_sec_level = BT_SECURITY_LOW;
return conn;
}
static void timeout_fiber(int arg1, int arg2)
{
struct bt_conn *conn = (struct bt_conn *)arg1;
ARG_UNUSED(arg2);
conn->timeout = NULL;
bt_conn_disconnect(conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN);
bt_conn_put(conn);
}
void bt_conn_set_state(struct bt_conn *conn, bt_conn_state_t state)
{
bt_conn_state_t old_state;
BT_DBG("%s -> %s\n", state2str(conn->state), state2str(state));
if (conn->state == state) {
BT_WARN("no transition\n");
return;
}
old_state = conn->state;
conn->state = state;
/* Actions needed for exiting the old state */
switch (old_state) {
case BT_CONN_DISCONNECTED:
/* Take a reference for the first state transition after
* bt_conn_add() and keep it until reaching DISCONNECTED
* again.
*/
bt_conn_get(conn);
break;
case BT_CONN_CONNECT:
if (conn->timeout) {
fiber_fiber_delayed_start_cancel(conn->timeout);
conn->timeout = NULL;
/* Drop the reference taken by timeout fiber */
bt_conn_put(conn);
}
break;
default:
break;
}
/* Actions needed for entering the new state */
switch (conn->state){
case BT_CONN_CONNECTED:
nano_fifo_init(&conn->tx_queue);
fiber_start(conn->stack, sizeof(conn->stack), conn_tx_fiber,
(int)bt_conn_get(conn), 0, 7, 0);
bt_l2cap_connected(conn);
break;
case BT_CONN_DISCONNECTED:
/* Send dummy buffer to wake up and stop the tx fiber
* for states where it was running
*/
if (old_state == BT_CONN_CONNECTED ||
old_state == BT_CONN_DISCONNECT) {
bt_l2cap_disconnected(conn);
bt_conn_disconnected(conn);
nano_fifo_put(&conn->tx_queue, bt_buf_get(BT_DUMMY, 0));
}
/* Release the reference we took for the very first
* state transition.
*/
bt_conn_put(conn);
break;
case BT_CONN_CONNECT_SCAN:
break;
case BT_CONN_CONNECT:
/* Add LE Create Connection timeout */
conn->timeout = fiber_delayed_start(conn->stack,
sizeof(conn->stack),
timeout_fiber,
(int)bt_conn_get(conn),
0, 7, 0, CONN_TIMEOUT);
break;
case BT_CONN_DISCONNECT:
break;
default:
BT_WARN("no valid (%u) state was set\n", state);
break;
}
}
struct bt_conn *bt_conn_lookup_handle(uint16_t handle)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
/* We only care about connections with a valid handle */
if (conns[i].state != BT_CONN_CONNECTED &&
conns[i].state != BT_CONN_DISCONNECT) {
continue;
}
if (conns[i].handle == handle) {
return bt_conn_get(&conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_lookup_addr_le(const bt_addr_le_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (!bt_addr_le_cmp(peer, &conns[i].dst)) {
return bt_conn_get(&conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_lookup_state(const bt_addr_le_t *peer,
const bt_conn_state_t state)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (bt_addr_le_cmp(peer, BT_ADDR_LE_ANY) &&
bt_addr_le_cmp(peer, &conns[i].dst)) {
continue;
}
if (conns[i].state == state) {
return bt_conn_get(&conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_get(struct bt_conn *conn)
{
atomic_inc(&conn->ref);
BT_DBG("handle %u ref %u\n", conn->handle, atomic_get(&conn->ref));
return conn;
}
void bt_conn_put(struct bt_conn *conn)
{
atomic_dec(&conn->ref);
BT_DBG("handle %u ref %u\n", conn->handle, atomic_get(&conn->ref));
}
const bt_addr_le_t *bt_conn_get_dst(const struct bt_conn *conn)
{
return &conn->dst;
}
int bt_conn_security(struct bt_conn *conn, bt_security_t sec)
{
if (conn->state != BT_CONN_CONNECTED) {
return -ENOTCONN;
}
/* nothing to do */
if (conn->sec_level >= sec || conn->required_sec_level >= sec) {
return 0;
}
/* for now we only support legacy pairing */
if (sec > BT_SECURITY_HIGH) {
return -EINVAL;
}
conn->required_sec_level = sec;
if (conn->role == BT_HCI_ROLE_MASTER) {
struct bt_keys *keys;
keys = bt_keys_find(BT_KEYS_LTK, &conn->dst);
if (keys) {
if (sec > BT_SECURITY_MEDIUM &&
keys->type != BT_KEYS_AUTHENTICATED) {
return bt_smp_send_pairing_req(conn);
}
return bt_conn_le_start_encryption(conn, keys->ltk.rand,
keys->ltk.ediv,
keys->ltk.val);
}
return bt_smp_send_pairing_req(conn);
}
return bt_smp_send_security_req(conn);
}
void bt_conn_set_auto_conn(struct bt_conn *conn, bool auto_conn)
{
if (auto_conn) {
atomic_set_bit(conn->flags, BT_CONN_AUTO_CONNECT);
} else {
atomic_clear_bit(conn->flags, BT_CONN_AUTO_CONNECT);
}
}
static int bt_hci_disconnect(struct bt_conn *conn, uint8_t reason)
{
struct bt_buf *buf;
struct bt_hci_cp_disconnect *disconn;
int err;
buf = bt_hci_cmd_create(BT_HCI_OP_DISCONNECT, sizeof(*disconn));
if (!buf) {
return -ENOBUFS;
}
disconn = bt_buf_add(buf, sizeof(*disconn));
disconn->handle = sys_cpu_to_le16(conn->handle);
disconn->reason = reason;
err = bt_hci_cmd_send(BT_HCI_OP_DISCONNECT, buf);
if (err) {
return err;
}
bt_conn_set_state(conn, BT_CONN_DISCONNECT);
return 0;
}
static int bt_hci_connect_le_cancel(struct bt_conn *conn)
{
int err;
if (conn->timeout) {
fiber_fiber_delayed_start_cancel(conn->timeout);
conn->timeout = NULL;
/* Drop the reference took by timeout fiber */
bt_conn_put(conn);
}
err = bt_hci_cmd_send(BT_HCI_OP_LE_CREATE_CONN_CANCEL, NULL);
if (err) {
return err;
}
return 0;
}
int bt_conn_disconnect(struct bt_conn *conn, uint8_t reason)
{
/* Disconnection is initiated by us, so auto connection shall
* be disabled. Otherwise the passive scan would be enabled
* and we could send LE Create Connection as soon as the remote
* starts advertising.
*/
bt_conn_set_auto_conn(conn, false);
switch (conn->state) {
case BT_CONN_CONNECT_SCAN:
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
bt_le_scan_update();
return 0;
case BT_CONN_CONNECT:
return bt_hci_connect_le_cancel(conn);
case BT_CONN_CONNECTED:
return bt_hci_disconnect(conn, reason);
case BT_CONN_DISCONNECT:
return 0;
case BT_CONN_DISCONNECTED:
default:
return -ENOTCONN;
}
}
struct bt_conn *bt_conn_create_le(const bt_addr_le_t *peer)
{
struct bt_conn *conn;
conn = bt_conn_lookup_addr_le(peer);
if (conn) {
switch (conn->state) {
case BT_CONN_CONNECT_SCAN:
case BT_CONN_CONNECT:
case BT_CONN_CONNECTED:
return conn;
default:
bt_conn_put(conn);
return NULL;
}
}
conn = bt_conn_add(peer);
if (!conn) {
return NULL;
}
bt_conn_set_state(conn, BT_CONN_CONNECT_SCAN);
bt_le_scan_update();
return conn;
}
int bt_conn_le_start_encryption(struct bt_conn *conn, uint64_t rand,
uint16_t ediv, const uint8_t *ltk)
{
struct bt_hci_cp_le_start_encryption *cp;
struct bt_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_START_ENCRYPTION, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = bt_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->rand = rand;
cp->ediv = ediv;
memcpy(cp->ltk, ltk, sizeof(cp->ltk));
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_START_ENCRYPTION, buf, NULL);
}
int bt_conn_le_conn_update(struct bt_conn *conn, uint16_t min, uint16_t max,
uint16_t latency, uint16_t timeout)
{
struct hci_cp_le_conn_update *conn_update;
struct bt_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_CONN_UPDATE,
sizeof(*conn_update));
if (!buf) {
return -ENOBUFS;
}
conn_update = bt_buf_add(buf, sizeof(*conn_update));
memset(conn_update, 0, sizeof(*conn_update));
conn_update->handle = sys_cpu_to_le16(conn->handle);
conn_update->conn_interval_min = sys_cpu_to_le16(min);
conn_update->conn_interval_max = sys_cpu_to_le16(max);
conn_update->conn_latency = sys_cpu_to_le16(latency);
conn_update->supervision_timeout = sys_cpu_to_le16(timeout);
return bt_hci_cmd_send(BT_HCI_OP_LE_CONN_UPDATE, buf);
}