zephyr/boards/nxp/frdm_mcxa156/board.c

250 lines
7.8 KiB
C
Raw Normal View History

/*
* Copyright 2024 NXP
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <zephyr/device.h>
#include <zephyr/dt-bindings/clock/mcux_lpc_syscon_clock.h>
#include <fsl_clock.h>
#include <fsl_spc.h>
#include <soc.h>
/* Core clock frequency: 96MHz */
#define CLOCK_INIT_CORE_CLOCK 96000000U
#define BOARD_BOOTCLOCKFRO96M_CORE_CLOCK 96000000U
/* System clock frequency. */
extern uint32_t SystemCoreClock;
void board_early_init_hook(void)
{
uint32_t coreFreq;
spc_active_mode_core_ldo_option_t ldoOption;
spc_sram_voltage_config_t sramOption;
/* Get the CPU Core frequency */
coreFreq = CLOCK_GetCoreSysClkFreq();
/* The flow of increasing voltage and frequency */
if (coreFreq <= BOARD_BOOTCLOCKFRO96M_CORE_CLOCK) {
/* Set the LDO_CORE VDD regulator level */
ldoOption.CoreLDOVoltage = kSPC_CoreLDO_NormalVoltage;
ldoOption.CoreLDODriveStrength = kSPC_CoreLDO_NormalDriveStrength;
(void)SPC_SetActiveModeCoreLDORegulatorConfig(SPC0, &ldoOption);
/* Configure Flash to support different voltage level and frequency */
FMU0->FCTRL =
(FMU0->FCTRL & ~((uint32_t)FMU_FCTRL_RWSC_MASK)) | (FMU_FCTRL_RWSC(0x2U));
/* Specifies the operating voltage for the SRAM's read/write timing margin */
sramOption.operateVoltage = kSPC_sramOperateAt1P1V;
sramOption.requestVoltageUpdate = true;
(void)SPC_SetSRAMOperateVoltage(SPC0, &sramOption);
}
CLOCK_SetupFROHFClocking(CLOCK_INIT_CORE_CLOCK); /*!< Enable FRO HF(96MHz) output */
CLOCK_SetupFRO12MClocking(); /*!< Setup FRO12M clock */
CLOCK_AttachClk(kFRO_HF_to_MAIN_CLK); /* !< Switch MAIN_CLK to FRO_HF */
/* The flow of decreasing voltage and frequency */
if (coreFreq > BOARD_BOOTCLOCKFRO96M_CORE_CLOCK) {
/* Configure Flash to support different voltage level and frequency */
FMU0->FCTRL =
(FMU0->FCTRL & ~((uint32_t)FMU_FCTRL_RWSC_MASK)) | (FMU_FCTRL_RWSC(0x2U));
/* Specifies the operating voltage for the SRAM's read/write timing margin */
sramOption.operateVoltage = kSPC_sramOperateAt1P1V;
sramOption.requestVoltageUpdate = true;
(void)SPC_SetSRAMOperateVoltage(SPC0, &sramOption);
/* Set the LDO_CORE VDD regulator level */
ldoOption.CoreLDOVoltage = kSPC_CoreLDO_NormalVoltage;
ldoOption.CoreLDODriveStrength = kSPC_CoreLDO_NormalDriveStrength;
(void)SPC_SetActiveModeCoreLDORegulatorConfig(SPC0, &ldoOption);
}
/*!< Set up clock selectors - Attach clocks to the peripheries */
/*!< Set up dividers */
CLOCK_SetClockDiv(kCLOCK_DivAHBCLK, 1U); /* !< Set AHBCLKDIV divider to value 1 */
CLOCK_SetClockDiv(kCLOCK_DivFRO_HF_DIV, 1U); /* !< Set FROHFDIV divider to value 1 */
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(porta))
RESET_ReleasePeripheralReset(kPORT0_RST_SHIFT_RSTn);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(portb))
RESET_ReleasePeripheralReset(kPORT1_RST_SHIFT_RSTn);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(portc))
RESET_ReleasePeripheralReset(kPORT2_RST_SHIFT_RSTn);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(portd))
RESET_ReleasePeripheralReset(kPORT3_RST_SHIFT_RSTn);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(porte))
RESET_ReleasePeripheralReset(kPORT4_RST_SHIFT_RSTn);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(gpio0))
RESET_ReleasePeripheralReset(kGPIO0_RST_SHIFT_RSTn);
CLOCK_EnableClock(kCLOCK_GateGPIO0);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(gpio1))
RESET_ReleasePeripheralReset(kGPIO1_RST_SHIFT_RSTn);
CLOCK_EnableClock(kCLOCK_GateGPIO1);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(gpio2))
RESET_ReleasePeripheralReset(kGPIO2_RST_SHIFT_RSTn);
CLOCK_EnableClock(kCLOCK_GateGPIO2);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(gpio3))
RESET_ReleasePeripheralReset(kGPIO3_RST_SHIFT_RSTn);
CLOCK_EnableClock(kCLOCK_GateGPIO3);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(gpio4))
RESET_ReleasePeripheralReset(kGPIO4_RST_SHIFT_RSTn);
CLOCK_EnableClock(kCLOCK_GateGPIO4);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpuart0))
CLOCK_SetClockDiv(kCLOCK_DivLPUART0, 1u);
CLOCK_AttachClk(kFRO12M_to_LPUART0);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpuart1))
CLOCK_SetClockDiv(kCLOCK_DivLPUART1, 1u);
CLOCK_AttachClk(kFRO12M_to_LPUART1);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(ctimer0))
CLOCK_SetClockDiv(kCLOCK_DivCTIMER0, 1u);
CLOCK_AttachClk(kFRO_HF_to_CTIMER0);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(ctimer1))
CLOCK_SetClockDiv(kCLOCK_DivCTIMER1, 1u);
CLOCK_AttachClk(kFRO_HF_to_CTIMER1);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(ctimer2))
CLOCK_SetClockDiv(kCLOCK_DivCTIMER2, 1u);
CLOCK_AttachClk(kFRO_HF_to_CTIMER2);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(ctimer3))
CLOCK_SetClockDiv(kCLOCK_DivCTIMER3, 1u);
CLOCK_AttachClk(kFRO_HF_to_CTIMER3);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(ctimer4))
CLOCK_SetClockDiv(kCLOCK_DivCTIMER4, 1u);
CLOCK_AttachClk(kFRO_HF_to_CTIMER4);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(dac0))
SPC_EnableActiveModeAnalogModules(SPC0, kSPC_controlDac0);
CLOCK_SetClockDiv(kCLOCK_DivDAC0, 1u);
CLOCK_AttachClk(kFRO12M_to_DAC0);
CLOCK_EnableClock(kCLOCK_GateDAC0);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(flexcan0))
CLOCK_SetClockDiv(kCLOCK_DivFLEXCAN0, 1U);
CLOCK_SetClockDiv(kCLOCK_DivFRO_HF_DIV, 1U);
CLOCK_AttachClk(kFRO_HF_DIV_to_FLEXCAN0);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(flexio0))
CLOCK_SetClockDiv(kCLOCK_DivFLEXIO0, 1u);
CLOCK_AttachClk(kFRO_HF_to_FLEXIO0);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(i3c0))
/* Attach FRO_HF_DIV clock to I3C, 96MHz / 4 = 24MHz. */
CLOCK_SetClockDiv(kCLOCK_DivI3C0_FCLK, 4U);
CLOCK_AttachClk(kFRO_HF_DIV_to_I3C0FCLK);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpadc0))
CLOCK_SetClockDiv(kCLOCK_DivADC0, 1u);
CLOCK_AttachClk(kFRO12M_to_ADC0);
CLOCK_EnableClock(kCLOCK_GateADC0);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpcmp0))
CLOCK_AttachClk(kFRO12M_to_CMP0);
CLOCK_SetClockDiv(kCLOCK_DivCMP0_FUNC, 1U);
SPC_EnableActiveModeAnalogModules(SPC0, (kSPC_controlCmp0 | kSPC_controlCmp0Dac));
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpi2c0))
CLOCK_SetClockDiv(kCLOCK_DivLPI2C0, 1u);
CLOCK_AttachClk(kFRO12M_to_LPI2C0);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpi2c1))
CLOCK_SetClockDiv(kCLOCK_DivLPI2C1, 1u);
CLOCK_AttachClk(kFRO12M_to_LPI2C1);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpi2c2))
CLOCK_SetClockDiv(kCLOCK_DivLPI2C2, 1u);
CLOCK_AttachClk(kFRO12M_to_LPI2C2);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpi2c3))
CLOCK_SetClockDiv(kCLOCK_DivLPI2C3, 1u);
CLOCK_AttachClk(kFRO12M_to_LPI2C3);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpspi0))
/* Configure input clock to be able to reach the datasheet specified band rate. */
CLOCK_SetClockDiv(kCLOCK_DivLPSPI0, 1u);
CLOCK_AttachClk(kFRO_HF_DIV_to_LPSPI0);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lpspi1))
/* Configure input clock to be able to reach the datasheet specified band rate. */
CLOCK_SetClockDiv(kCLOCK_DivLPSPI1, 1u);
CLOCK_AttachClk(kFRO_HF_DIV_to_LPSPI1);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(lptmr0))
/*
* Clock Select Decides what input source the lptmr will clock from
*
* 0 <- Reserved
* 1 <- 16K FRO
* 2 <- Reserved
* 3 <- Combination of clocks configured in MRCC_LPTMR0_CLKSEL[MUX] field
*/
#if DT_PROP(DT_NODELABEL(lptmr0), clk_source) == 0x1
CLOCK_SetupFRO16KClocking(kCLKE_16K_SYSTEM | kCLKE_16K_COREMAIN);
#elif DT_PROP(DT_NODELABEL(lptmr0), clk_source) == 0x3
CLOCK_SetClockDiv(kCLOCK_DivLPTMR0, 1u);
CLOCK_AttachClk(kFRO12M_to_LPTMR0);
#endif /* DT_PROP(DT_NODELABEL(lptmr0), clk_source) */
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(usb))
RESET_PeripheralReset(kUSB0_RST_SHIFT_RSTn);
CLOCK_EnableUsbfsClock();
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(wwdt0))
CLOCK_SetClockDiv(kCLOCK_DivWWDT0, 1u);
#endif
/* Set SystemCoreClock variable. */
SystemCoreClock = CLOCK_INIT_CORE_CLOCK;
}