zephyr/drivers/flash/flash_stm32h7x.c

540 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (c) 2020 Vossloh Cogifer
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32h7_flash_controller
#include <kernel.h>
#include <device.h>
#include <string.h>
#include <drivers/flash.h>
#include <init.h>
#include <soc.h>
#include <stm32h7xx_ll_bus.h>
#include "flash_stm32.h"
#include "stm32_hsem.h"
#define LOG_DOMAIN flash_stm32h7
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
#define STM32H7_FLASH_MAX_ERASE_TIME 4000
/* Let's wait for double the max erase time to be sure that the operation is
* completed.
*/
#define STM32H7_FLASH_TIMEOUT (2 * STM32H7_FLASH_MAX_ERASE_TIME)
#ifdef CONFIG_CPU_CORTEX_M4
#error Flash driver on M4 core is not supported yet
#endif
#if defined(CONFIG_MULTITHREADING)
/*
* This is named flash_stm32_sem_take instead of flash_stm32_lock (and
* similarly for flash_stm32_sem_give) to avoid confusion with locking
* actual flash pages.
*/
static inline void _flash_stm32_sem_take(const struct device *dev)
{
k_sem_take(&FLASH_STM32_PRIV(dev)->sem, K_FOREVER);
z_stm32_hsem_lock(CFG_HW_FLASH_SEMID, HSEM_LOCK_WAIT_FOREVER);
}
static inline void _flash_stm32_sem_give(const struct device *dev)
{
z_stm32_hsem_unlock(CFG_HW_FLASH_SEMID);
k_sem_give(&FLASH_STM32_PRIV(dev)->sem);
}
#define flash_stm32_sem_init(dev) k_sem_init(&FLASH_STM32_PRIV(dev)->sem, 1, 1)
#define flash_stm32_sem_take(dev) _flash_stm32_sem_take(dev)
#define flash_stm32_sem_give(dev) _flash_stm32_sem_give(dev)
#else
#define flash_stm32_sem_init(dev)
#define flash_stm32_sem_take(dev)
#define flash_stm32_sem_give(dev)
#endif
bool flash_stm32_valid_range(const struct device *dev, off_t offset,
uint32_t len,
bool write)
{
if (write) {
if ((offset % FLASH_NB_32BITWORD_IN_FLASHWORD * 4) != 0) {
LOG_ERR("Write offset not aligned on flashword length. "
"Offset: 0x%x, flashword length: %d",
offset, FLASH_NB_32BITWORD_IN_FLASHWORD * 4);
return false;
}
}
return flash_stm32_range_exists(dev, offset, len);
}
static int flash_stm32_check_status(const struct device *dev)
{
uint32_t const error_bank1 = FLASH_FLAG_ALL_ERRORS_BANK1;
#ifdef DUAL_BANK
uint32_t const error_bank2 = FLASH_FLAG_ALL_ERRORS_BANK2;
#endif
if (FLASH_STM32_REGS(dev)->SR1 & error_bank1) {
LOG_ERR("Status Bank1: 0x%08x",
FLASH_STM32_REGS(dev)->SR1 & error_bank1);
return -EIO;
}
#ifdef DUAL_BANK
if (FLASH_STM32_REGS(dev)->SR2 & error_bank2) {
LOG_ERR("Status Bank2: 0x%08x",
FLASH_STM32_REGS(dev)->SR2 & error_bank2);
return -EIO;
}
#endif
return 0;
}
int flash_stm32_wait_flash_idle(const struct device *dev)
{
int64_t timeout_time = k_uptime_get() + STM32H7_FLASH_TIMEOUT;
int rc;
rc = flash_stm32_check_status(dev);
if (rc < 0) {
return -EIO;
}
#ifdef DUAL_BANK
while ((FLASH_STM32_REGS(dev)->SR1 & FLASH_SR_QW)
|| (FLASH_STM32_REGS(dev)->SR2 & FLASH_SR_QW))
#else
while (FLASH_STM32_REGS(dev)->SR1 & FLASH_SR_QW)
#endif
{
if (k_uptime_get() > timeout_time) {
LOG_ERR("Timeout! val: %d", STM32H7_FLASH_TIMEOUT);
return -EIO;
}
}
return 0;
}
static int erase_sector(const struct device *dev, uint32_t sector)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
int rc;
uint32_t tmp;
volatile uint32_t *cr;
if (sector < FLASH_SECTOR_TOTAL) {
cr = &regs->CR1;
#ifdef DUAL_BANK
} else if (sector < 2 * FLASH_SECTOR_TOTAL) {
cr = &regs->CR2;
#endif
} else {
return -EINVAL;
}
/* if the control register is locked, do not fail silently */
if (*cr & FLASH_CR_LOCK) {
return -EIO;
}
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
*cr &= FLASH_CR_SNB;
*cr |= (FLASH_CR_SER
| ((sector << FLASH_CR_SNB_Pos) & FLASH_CR_SNB));
*cr |= FLASH_CR_START;
/* flush the register write */
tmp = *cr;
rc = flash_stm32_wait_flash_idle(dev);
*cr &= ~(FLASH_CR_SER | FLASH_CR_SNB);
return rc;
}
static unsigned int get_sector(off_t offset)
{
return offset / FLASH_SECTOR_SIZE;
}
int flash_stm32_block_erase_loop(const struct device *dev,
unsigned int offset,
unsigned int len)
{
int i;
int rc = 0;
for (i = get_sector(offset); i <= get_sector(offset + len - 1); ++i) {
rc = erase_sector(dev, i);
if (rc < 0) {
break;
}
}
return rc;
}
static int wait_write_queue(const struct device *dev, off_t offset)
{
int64_t timeout_time = k_uptime_get() + 100;
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
uint32_t sector = get_sector(offset);
volatile uint32_t *sr;
if (sector < FLASH_SECTOR_TOTAL) {
sr = &regs->SR1;
#ifdef DUAL_BANK
} else if (sector < 2 * FLASH_SECTOR_TOTAL) {
sr = &regs->SR2;
#endif
} else {
return -EINVAL;
}
while (*sr & FLASH_SR_QW) {
if (k_uptime_get() > timeout_time) {
LOG_ERR("Timeout! val: %d", 100);
return -EIO;
}
}
return 0;
}
static int write_ndwords(const struct device *dev,
off_t offset, const uint64_t *data,
uint8_t n)
{
volatile uint64_t *flash = (uint64_t *)(offset
+ CONFIG_FLASH_BASE_ADDRESS);
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
volatile uint32_t *cr;
uint32_t tmp;
int rc;
int i;
uint32_t sector = get_sector(offset);
if (sector < FLASH_SECTOR_TOTAL) {
cr = &regs->CR1;
#ifdef DUAL_BANK
} else if (sector < 2 * FLASH_SECTOR_TOTAL) {
cr = &regs->CR2;
#endif
} else {
return -EINVAL;
}
/* if the control register is locked, do not fail silently */
if (*cr & FLASH_CR_LOCK) {
return -EIO;
}
/* Check that no Flash main memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
/* Check if 256 bits location is erased */
for (i = 0; i < n; ++i) {
if (flash[i] != 0xFFFFFFFFFFFFFFFFUL) {
return -EIO;
}
}
/* Set the PG bit */
*cr |= FLASH_CR_PG;
/* Flush the register write */
tmp = *cr;
/* Perform the data write operation at the desired memory address */
for (i = 0; i < n; ++i) {
flash[i] = data[i];
wait_write_queue(dev, offset);
}
/* Wait until the BSY bit is cleared */
rc = flash_stm32_wait_flash_idle(dev);
/* Clear the PG bit */
*cr &= (~FLASH_CR_PG);
return rc;
}
int flash_stm32_write_range(const struct device *dev, unsigned int offset,
const void *data, unsigned int len)
{
int rc = 0;
int i, j;
const uint8_t ndwords = FLASH_NB_32BITWORD_IN_FLASHWORD / 2;
const uint8_t nbytes = FLASH_NB_32BITWORD_IN_FLASHWORD * 4;
uint8_t unaligned_datas[nbytes];
for (i = 0; i < len && i + 32 <= len; i += 32, offset += 32U) {
rc = write_ndwords(dev, offset,
(const uint64_t *) data + (i >> 3),
ndwords);
if (rc < 0) {
return rc;
}
}
/* Handle the remaining bytes if length is not aligned on
* FLASH_NB_32BITWORD_IN_FLASHWORD
*/
if (i < len) {
memset(unaligned_datas, 0xff, sizeof(unaligned_datas));
for (j = 0; j < len - i; ++j) {
unaligned_datas[j] = ((uint8_t *)data)[i + j];
}
rc = write_ndwords(dev, offset,
(const uint64_t *)unaligned_datas,
ndwords);
if (rc < 0) {
return rc;
}
}
return rc;
}
static int flash_stm32h7_write_protection(const struct device *dev, bool enable)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
int rc = 0;
flash_stm32_sem_take(dev);
if (enable) {
rc = flash_stm32_wait_flash_idle(dev);
if (rc) {
flash_stm32_sem_give(dev);
return rc;
}
}
/* Bank 1 */
if (enable) {
regs->CR1 |= FLASH_CR_LOCK;
} else {
if (regs->CR1 & FLASH_CR_LOCK) {
regs->KEYR1 = FLASH_KEY1;
regs->KEYR1 = FLASH_KEY2;
}
}
#ifdef DUAL_BANK
/* Bank 2 */
if (enable) {
regs->CR2 |= FLASH_CR_LOCK;
} else {
if (regs->CR2 & FLASH_CR_LOCK) {
regs->KEYR2 = FLASH_KEY1;
regs->KEYR2 = FLASH_KEY2;
}
}
#endif
if (enable) {
LOG_DBG("Enable write protection");
} else {
LOG_DBG("Disable write protection");
}
flash_stm32_sem_give(dev);
return rc;
}
#ifdef CONFIG_CPU_CORTEX_M7
static void flash_stm32h7_flush_caches(const struct device *dev,
off_t offset, size_t len)
{
ARG_UNUSED(dev);
SCB_InvalidateDCache_by_Addr((uint32_t *)(CONFIG_FLASH_BASE_ADDRESS
+ offset), len);
}
#endif /* CONFIG_CPU_CORTEX_M7 */
static int flash_stm32h7_erase(const struct device *dev, off_t offset,
size_t len)
{
int rc;
#ifdef CONFIG_CPU_CORTEX_M7
off_t flush_offset = get_sector(offset) * FLASH_SECTOR_SIZE;
size_t flush_len = (((get_sector(offset + len) + 1) * FLASH_SECTOR_SIZE)
- flush_offset);
#endif /* CONFIG_CPU_CORTEX_M7 */
if (!flash_stm32_valid_range(dev, offset, len, true)) {
LOG_ERR("Erase range invalid. Offset: %ld, len: %zu",
(long) offset, len);
return -EINVAL;
}
if (!len) {
return 0;
}
flash_stm32_sem_take(dev);
LOG_DBG("Erase offset: %ld, len: %zu", (long) offset, len);
rc = flash_stm32_block_erase_loop(dev, offset, len);
#ifdef CONFIG_CPU_CORTEX_M7
/* Flush cache on all sectors affected by the erase */
flash_stm32h7_flush_caches(dev, flush_offset, flush_len);
#endif /* CONFIG_CPU_CORTEX_M7 */
flash_stm32_sem_give(dev);
return rc;
}
static int flash_stm32h7_write(const struct device *dev, off_t offset,
const void *data, size_t len)
{
int rc;
if (!flash_stm32_valid_range(dev, offset, len, true)) {
LOG_ERR("Write range invalid. Offset: %ld, len: %zu",
(long) offset, len);
return -EINVAL;
}
if (!len) {
return 0;
}
flash_stm32_sem_take(dev);
LOG_DBG("Write offset: %ld, len: %zu", (long) offset, len);
rc = flash_stm32_write_range(dev, offset, data, len);
flash_stm32_sem_give(dev);
return rc;
}
static int flash_stm32h7_read(const struct device *dev, off_t offset,
void *data,
size_t len)
{
if (!flash_stm32_valid_range(dev, offset, len, false)) {
LOG_ERR("Read range invalid. Offset: %ld, len: %zu",
(long) offset, len);
return -EINVAL;
}
if (!len) {
return 0;
}
LOG_DBG("Read offset: %ld, len: %zu", (long) offset, len);
memcpy(data, (uint8_t *) CONFIG_FLASH_BASE_ADDRESS + offset, len);
return 0;
}
static const struct flash_parameters flash_stm32h7_parameters = {
.write_block_size = FLASH_STM32_WRITE_BLOCK_SIZE,
.erase_value = 0xff,
};
static const struct flash_parameters *
flash_stm32h7_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
return &flash_stm32h7_parameters;
}
static const struct flash_pages_layout stm32h7_flash_layout[] = {
{ .pages_count = FLASH_SECTOR_TOTAL, .pages_size = FLASH_SECTOR_SIZE },
#ifdef DUAL_BANK
{ .pages_count = FLASH_SECTOR_TOTAL, .pages_size = FLASH_SECTOR_SIZE },
#endif
};
void flash_stm32_page_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
ARG_UNUSED(dev);
*layout = stm32h7_flash_layout;
*layout_size = ARRAY_SIZE(stm32h7_flash_layout);
}
static struct flash_stm32_priv flash_data = {
.regs = (FLASH_TypeDef *) DT_INST_REG_ADDR(0),
.pclken = { .bus = STM32_CLOCK_BUS_AHB3,
.enr = LL_AHB3_GRP1_PERIPH_FLASH },
};
static const struct flash_driver_api flash_stm32h7_api = {
.write_protection = flash_stm32h7_write_protection,
.erase = flash_stm32h7_erase,
.write = flash_stm32h7_write,
.read = flash_stm32h7_read,
.get_parameters = flash_stm32h7_get_parameters,
#ifdef CONFIG_FLASH_PAGE_LAYOUT
.page_layout = flash_stm32_page_layout,
#endif
};
static int stm32h7_flash_init(const struct device *dev)
{
struct flash_stm32_priv *p = FLASH_STM32_PRIV(dev);
const struct device *clk = device_get_binding(STM32_CLOCK_CONTROL_NAME);
/* enable clock */
if (clock_control_on(clk, (clock_control_subsys_t *)&p->pclken) != 0) {
LOG_ERR("Failed to enable clock");
return -EIO;
}
flash_stm32_sem_init(dev);
LOG_DBG("Flash initialized. BS: %zu",
flash_stm32h7_parameters.write_block_size);
#if ((CONFIG_FLASH_LOG_LEVEL >= LOG_LEVEL_DBG) && CONFIG_FLASH_PAGE_LAYOUT)
const struct flash_pages_layout *layout;
size_t layout_size;
flash_stm32_page_layout(dev, &layout, &layout_size);
for (size_t i = 0; i < layout_size; i++) {
LOG_DBG("Block %zu: bs: %zu count: %zu", i,
layout[i].pages_size, layout[i].pages_count);
}
#endif
return flash_stm32h7_write_protection(dev, false);
}
DEVICE_DT_INST_DEFINE(0, stm32h7_flash_init, device_pm_control_nop,
&flash_data, NULL, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &flash_stm32h7_api);