zephyr/subsys/net/lib/lwm2m/lwm2m_obj_server.c

463 lines
13 KiB
C
Raw Normal View History

net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
/*
* Copyright (c) 2017 Linaro Limited
* Copyright (c) 2018-2019 Foundries.io
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_MODULE_NAME net_lwm2m_obj_server
#define LOG_LEVEL CONFIG_LWM2M_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
#include <stdint.h>
#include <zephyr/init.h>
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
#include "lwm2m_object.h"
#include "lwm2m_obj_server.h"
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
#include "lwm2m_rd_client.h"
#include "lwm2m_registry.h"
#include "lwm2m_engine.h"
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
#define SERVER_VERSION_MAJOR 1
#if defined(CONFIG_LWM2M_SERVER_OBJECT_VERSION_1_1)
#define SERVER_VERSION_MINOR 1
#define SERVER_MAX_ID 24
#else
#define SERVER_VERSION_MINOR 0
#define SERVER_MAX_ID 9
#endif /* defined(CONFIG_LWM2M_SERVER_OBJECT_VERSION_1_1) */
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
/* Server flags */
#define SERVER_FLAG_STORE_NOTIFY 2
#define MAX_INSTANCE_COUNT CONFIG_LWM2M_SERVER_INSTANCE_COUNT
#define TRANSPORT_BINDING_LEN 4
/*
* Calculate resource instances as follows:
* start with SERVER_MAX_ID
* subtract EXEC resources (2)
*/
#define RESOURCE_INSTANCE_COUNT (SERVER_MAX_ID - 2)
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
/* resource state variables */
static uint16_t server_id[MAX_INSTANCE_COUNT];
static uint32_t lifetime[MAX_INSTANCE_COUNT];
static uint32_t default_min_period[MAX_INSTANCE_COUNT];
static uint32_t default_max_period[MAX_INSTANCE_COUNT];
static k_timepoint_t disabled_until[MAX_INSTANCE_COUNT];
static uint32_t disabled_timeout[MAX_INSTANCE_COUNT];
static uint8_t server_flag_store_notify[MAX_INSTANCE_COUNT];
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
static char transport_binding[MAX_INSTANCE_COUNT][TRANSPORT_BINDING_LEN];
/* Server object version 1.1 */
static uint8_t priority[MAX_INSTANCE_COUNT];
static bool mute_send[MAX_INSTANCE_COUNT];
static bool boostrap_on_fail[MAX_INSTANCE_COUNT];
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
static struct lwm2m_engine_obj server;
static struct lwm2m_engine_obj_field fields[] = {
OBJ_FIELD_DATA(SERVER_SHORT_SERVER_ID, R, U16),
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
OBJ_FIELD_DATA(SERVER_LIFETIME_ID, RW, U32),
OBJ_FIELD_DATA(SERVER_DEFAULT_MIN_PERIOD_ID, RW_OPT, U32),
OBJ_FIELD_DATA(SERVER_DEFAULT_MAX_PERIOD_ID, RW_OPT, U32),
OBJ_FIELD_EXECUTE_OPT(SERVER_DISABLE_ID),
OBJ_FIELD_DATA(SERVER_DISABLE_TIMEOUT_ID, RW_OPT, U32),
OBJ_FIELD_DATA(SERVER_STORE_NOTIFY_ID, RW, BOOL),
/* Mark Transport Binding is RO but BOOTSTRAP needs to write it */
OBJ_FIELD_DATA(SERVER_TRANSPORT_BINDING_ID, RW, STRING),
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
OBJ_FIELD_EXECUTE(SERVER_REG_UPDATE_TRIGGER_ID),
#if defined(CONFIG_LWM2M_SERVER_OBJECT_VERSION_1_1)
OBJ_FIELD_EXECUTE(SERVER_BOOTSTRAP_UPDATE_TRIGGER_ID),
OBJ_FIELD_DATA(SERVER_APN_LINK_ID, RW_OPT, OBJLNK),
OBJ_FIELD_DATA(SERVER_TLS_DTLS_ALERT_CODE_ID, R_OPT, U8),
OBJ_FIELD_DATA(SERVER_LAST_BOOTSTRAPPED_ID, R_OPT, TIME),
OBJ_FIELD_DATA(SERVER_REGISTRATION_PRIORITY_ORDER_ID, RW_OPT, U8),
OBJ_FIELD_DATA(SERVER_INITIAL_REGISTRATION_DELAY_TIMER_ID, W_OPT, U16),
OBJ_FIELD_DATA(SERVER_REGISTRATION_FAILURE_BLOCK_ID, W_OPT, BOOL),
OBJ_FIELD_DATA(SERVER_BOOTSTRAP_ON_REGISTRATION_FAILURE_ID, RW_OPT, BOOL),
OBJ_FIELD_DATA(SERVER_COMMUNICATION_RETRY_COUNT_ID, W_OPT, U16),
OBJ_FIELD_DATA(SERVER_COMMUNICATION_RETRY_TIMER_ID, W_OPT, U16),
OBJ_FIELD_DATA(SERVER_COMMUNICATION_SEQUENCE_DELAY_TIMER_ID, W_OPT, U16),
OBJ_FIELD_DATA(SERVER_COMMUNICATION_SEQUENCE_RETRY_TIMER_ID, W_OPT, U16),
OBJ_FIELD_DATA(SERVER_SMS_TRIGGER_ID, RW_OPT, BOOL),
OBJ_FIELD_DATA(SERVER_PREFERRED_TRANSPORT_ID, RW_OPT, STRING),
OBJ_FIELD_DATA(SERVER_MUTE_SEND_ID, RW_OPT, BOOL),
#endif /* defined(CONFIG_LWM2M_SERVER_OBJECT_VERSION_1_1) */
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
};
static struct lwm2m_engine_obj_inst inst[MAX_INSTANCE_COUNT];
static struct lwm2m_engine_res res[MAX_INSTANCE_COUNT][SERVER_MAX_ID];
static struct lwm2m_engine_res_inst
res_inst[MAX_INSTANCE_COUNT][RESOURCE_INSTANCE_COUNT];
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
static int disable_cb(uint16_t obj_inst_id, uint8_t *args, uint16_t args_len)
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
{
ARG_UNUSED(args);
ARG_UNUSED(args_len);
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
int ret;
for (int i = 0; i < MAX_INSTANCE_COUNT; i++) {
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
if (inst[i].obj && inst[i].obj_inst_id == obj_inst_id) {
LOG_DBG("DISABLE %d", obj_inst_id);
ret = lwm2m_rd_client_server_disabled(obj_inst_id);
if (ret == 0) {
disabled_until[i] =
sys_timepoint_calc(K_SECONDS(disabled_timeout[i]));
return 0;
}
return ret;
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
}
}
return -ENOENT;
}
static int update_trigger_cb(uint16_t obj_inst_id,
uint8_t *args, uint16_t args_len)
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
{
engine_trigger_update(false);
return 0;
}
static int bootstrap_trigger_cb(uint16_t obj_inst_id,
uint8_t *args, uint16_t args_len)
{
return engine_trigger_bootstrap();
}
bool lwm2m_server_get_mute_send(uint16_t obj_inst_id)
{
int i;
for (i = 0; i < ARRAY_SIZE(inst); i++) {
if (inst[i].obj && inst[i].obj_inst_id == obj_inst_id) {
return mute_send[i];
}
}
return false;
}
static int lifetime_write_cb(uint16_t obj_inst_id, uint16_t res_id,
uint16_t res_inst_id, uint8_t *data,
uint16_t data_len, bool last_block,
size_t total_size, size_t offset)
{
ARG_UNUSED(obj_inst_id);
ARG_UNUSED(res_id);
ARG_UNUSED(res_inst_id);
ARG_UNUSED(data);
ARG_UNUSED(data_len);
ARG_UNUSED(last_block);
ARG_UNUSED(total_size);
engine_trigger_update(false);
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
return 0;
}
static int32_t server_get_instance_s32(uint16_t obj_inst_id, int32_t *data,
int32_t default_value)
{
int i;
for (i = 0; i < ARRAY_SIZE(inst); i++) {
if (inst[i].obj && inst[i].obj_inst_id == obj_inst_id) {
return data[i];
}
}
return default_value;
}
int32_t lwm2m_server_get_pmin(uint16_t obj_inst_id)
{
return server_get_instance_s32(obj_inst_id, default_min_period,
CONFIG_LWM2M_SERVER_DEFAULT_PMIN);
}
int32_t lwm2m_server_get_pmax(uint16_t obj_inst_id)
{
return server_get_instance_s32(obj_inst_id, default_max_period,
CONFIG_LWM2M_SERVER_DEFAULT_PMAX);
}
int lwm2m_server_get_ssid(uint16_t obj_inst_id)
{
int i;
for (i = 0; i < ARRAY_SIZE(inst); i++) {
if (inst[i].obj && inst[i].obj_inst_id == obj_inst_id) {
return server_id[i];
}
}
return -ENOENT;
}
int lwm2m_server_short_id_to_inst(uint16_t short_id)
{
int i;
for (i = 0; i < ARRAY_SIZE(inst); i++) {
if (inst[i].obj && server_id[i] == short_id) {
return inst[i].obj_inst_id;
}
}
return -ENOENT;
}
static int lwm2m_server_inst_id_to_index(uint16_t obj_inst_id)
{
for (int i = 0; i < ARRAY_SIZE(inst); i++) {
if (inst[i].obj && inst[i].obj_inst_id == obj_inst_id) {
return i;
}
}
return -1;
}
bool lwm2m_server_is_enabled(uint16_t obj_inst_id)
{
int idx = lwm2m_server_inst_id_to_index(obj_inst_id);
if (idx < 0) {
return false;
}
return sys_timepoint_expired(disabled_until[idx]);
}
int lwm2m_server_disable(uint16_t obj_inst_id, k_timeout_t timeout)
{
int idx = lwm2m_server_inst_id_to_index(obj_inst_id);
if (idx < 0) {
return -ENOENT;
}
disabled_until[idx] = sys_timepoint_calc(timeout);
return 0;
}
k_timepoint_t lwm2m_server_get_disabled_time(uint16_t obj_inst_id)
{
int idx = lwm2m_server_inst_id_to_index(obj_inst_id);
if (idx < 0) {
return sys_timepoint_calc(K_FOREVER);
}
return disabled_until[idx];
}
void lwm2m_server_reset_timestamps(void)
{
for (int i = 0; i < ARRAY_SIZE(inst); i++) {
disabled_until[i] = sys_timepoint_calc(K_NO_WAIT);
}
}
bool lwm2m_server_select(uint16_t *obj_inst_id)
{
uint8_t min = UINT8_MAX;
uint8_t max = 0;
/* Find priority boundaries */
if (IS_ENABLED(CONFIG_LWM2M_SERVER_OBJECT_VERSION_1_1)) {
for (int i = 0; i < ARRAY_SIZE(inst); i++) {
if (min > priority[i]) {
min = priority[i];
}
if (max < priority[i]) {
max = priority[i];
}
}
} else {
min = max = 0;
}
for (uint8_t prio = min; prio <= max; prio++) {
for (int i = 0; i < ARRAY_SIZE(inst); i++) {
/* Disabled for a period */
if (!lwm2m_server_is_enabled(inst[i].obj_inst_id)) {
continue;
}
/* Invalid short IDs */
if (server_id[i] == 0 || server_id[i] == UINT16_MAX) {
continue;
}
/* Check priority */
if (IS_ENABLED(CONFIG_LWM2M_SERVER_OBJECT_VERSION_1_1)) {
if (priority[i] > prio) {
continue;
}
}
if (obj_inst_id) {
*obj_inst_id = inst[i].obj_inst_id;
}
return true;
}
}
LOG_ERR("No server candidate found");
return false;
}
uint8_t lwm2m_server_get_prio(uint16_t obj_inst_id)
{
if (IS_ENABLED(CONFIG_LWM2M_SERVER_OBJECT_VERSION_1_1)) {
int idx = lwm2m_server_inst_id_to_index(obj_inst_id);
if (idx < 0) {
return UINT8_MAX;
}
return priority[idx];
}
return (uint8_t)obj_inst_id % UINT8_MAX;
}
static struct lwm2m_engine_obj_inst *server_create(uint16_t obj_inst_id)
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
{
int index, i = 0, j = 0;
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
/* Check that there is no other instance with this ID */
for (index = 0; index < MAX_INSTANCE_COUNT; index++) {
if (inst[index].obj && inst[index].obj_inst_id == obj_inst_id) {
LOG_ERR("Can not create instance - "
"already existing: %u", obj_inst_id);
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
return NULL;
}
}
for (index = 0; index < MAX_INSTANCE_COUNT; index++) {
if (!inst[index].obj) {
break;
}
}
if (index >= MAX_INSTANCE_COUNT) {
LOG_ERR("Can not create instance - "
"no more room: %u", obj_inst_id);
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
return NULL;
}
/* Set default values */
disabled_until[i] = sys_timepoint_calc(K_NO_WAIT);
server_flag_store_notify[index] = 0U;
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
server_id[index] = index + 1;
lifetime[index] = CONFIG_LWM2M_ENGINE_DEFAULT_LIFETIME;
default_min_period[index] = CONFIG_LWM2M_SERVER_DEFAULT_PMIN;
default_max_period[index] = CONFIG_LWM2M_SERVER_DEFAULT_PMAX;
disabled_timeout[index] = 86400U;
boostrap_on_fail[index] = true;
lwm2m_engine_get_binding(transport_binding[index]);
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
(void)memset(res[index], 0,
sizeof(res[index][0]) * ARRAY_SIZE(res[index]));
init_res_instance(res_inst[index], ARRAY_SIZE(res_inst[index]));
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
/* initialize instance resource data */
INIT_OBJ_RES_DATA(SERVER_SHORT_SERVER_ID, res[index], i,
res_inst[index], j,
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
&server_id[index], sizeof(*server_id));
INIT_OBJ_RES(SERVER_LIFETIME_ID, res[index], i, res_inst[index], j,
1U, false, true, &lifetime[index], sizeof(*lifetime),
NULL, NULL, NULL, lifetime_write_cb, NULL);
INIT_OBJ_RES_DATA(SERVER_DEFAULT_MIN_PERIOD_ID, res[index], i,
res_inst[index], j,
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
&default_min_period[index],
sizeof(*default_min_period));
INIT_OBJ_RES_DATA(SERVER_DEFAULT_MAX_PERIOD_ID, res[index], i,
res_inst[index], j,
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
&default_max_period[index],
sizeof(*default_max_period));
INIT_OBJ_RES_EXECUTE(SERVER_DISABLE_ID, res[index], i, disable_cb);
INIT_OBJ_RES_DATA(SERVER_DISABLE_TIMEOUT_ID, res[index], i,
res_inst[index], j,
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
&disabled_timeout[index],
sizeof(*disabled_timeout));
INIT_OBJ_RES_DATA(SERVER_STORE_NOTIFY_ID, res[index], i,
res_inst[index], j,
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
&server_flag_store_notify[index],
sizeof(*server_flag_store_notify));
/* Mark Transport Binding RO as we only support UDP atm */
INIT_OBJ_RES_DATA_LEN(SERVER_TRANSPORT_BINDING_ID, res[index], i, res_inst[index], j,
transport_binding[index], TRANSPORT_BINDING_LEN,
strlen(transport_binding[index]) + 1);
INIT_OBJ_RES_EXECUTE(SERVER_REG_UPDATE_TRIGGER_ID, res[index], i, update_trigger_cb);
if (IS_ENABLED(CONFIG_LWM2M_SERVER_OBJECT_VERSION_1_1)) {
mute_send[index] = false;
priority[index] = 0;
INIT_OBJ_RES_EXECUTE(SERVER_BOOTSTRAP_UPDATE_TRIGGER_ID, res[index], i,
bootstrap_trigger_cb);
INIT_OBJ_RES_OPTDATA(SERVER_APN_LINK_ID, res[index], i, res_inst[index], j);
INIT_OBJ_RES_OPTDATA(SERVER_TLS_DTLS_ALERT_CODE_ID, res[index], i, res_inst[index],
j);
INIT_OBJ_RES_OPTDATA(SERVER_LAST_BOOTSTRAPPED_ID, res[index], i, res_inst[index],
j);
INIT_OBJ_RES_DATA(SERVER_REGISTRATION_PRIORITY_ORDER_ID, res[index], i,
res_inst[index], j, &priority[index], sizeof(uint8_t));
INIT_OBJ_RES_OPTDATA(SERVER_INITIAL_REGISTRATION_DELAY_TIMER_ID, res[index], i,
res_inst[index], j);
INIT_OBJ_RES_OPTDATA(SERVER_REGISTRATION_FAILURE_BLOCK_ID, res[index], i,
res_inst[index], j);
INIT_OBJ_RES_DATA(SERVER_BOOTSTRAP_ON_REGISTRATION_FAILURE_ID, res[index], i,
res_inst[index], j, &boostrap_on_fail[index], sizeof(bool));
INIT_OBJ_RES_OPTDATA(SERVER_COMMUNICATION_RETRY_COUNT_ID, res[index], i,
res_inst[index], j);
INIT_OBJ_RES_OPTDATA(SERVER_COMMUNICATION_RETRY_TIMER_ID, res[index], i,
res_inst[index], j);
INIT_OBJ_RES_OPTDATA(SERVER_COMMUNICATION_SEQUENCE_DELAY_TIMER_ID, res[index], i,
res_inst[index], j);
INIT_OBJ_RES_OPTDATA(SERVER_COMMUNICATION_SEQUENCE_RETRY_TIMER_ID, res[index], i,
res_inst[index], j);
INIT_OBJ_RES_OPTDATA(SERVER_SMS_TRIGGER_ID, res[index], i, res_inst[index], j);
INIT_OBJ_RES_OPTDATA(SERVER_PREFERRED_TRANSPORT_ID, res[index], i, res_inst[index],
j);
INIT_OBJ_RES_DATA(SERVER_MUTE_SEND_ID, res[index], i, res_inst[index], j,
&mute_send[index], sizeof(bool));
}
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
inst[index].resources = res[index];
inst[index].resource_count = i;
LOG_DBG("Create LWM2M server instance: %d", obj_inst_id);
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
return &inst[index];
}
init: remove the need for a dummy device pointer in SYS_INIT functions The init infrastructure, found in `init.h`, is currently used by: - `SYS_INIT`: to call functions before `main` - `DEVICE_*`: to initialize devices They are all sorted according to an initialization level + a priority. `SYS_INIT` calls are really orthogonal to devices, however, the required function signature requires a `const struct device *dev` as a first argument. The only reason for that is because the same init machinery is used by devices, so we have something like: ```c struct init_entry { int (*init)(const struct device *dev); /* only set by DEVICE_*, otherwise NULL */ const struct device *dev; } ``` As a result, we end up with such weird/ugly pattern: ```c static int my_init(const struct device *dev) { /* always NULL! add ARG_UNUSED to avoid compiler warning */ ARG_UNUSED(dev); ... } ``` This is really a result of poor internals isolation. This patch proposes a to make init entries more flexible so that they can accept sytem initialization calls like this: ```c static int my_init(void) { ... } ``` This is achieved using a union: ```c union init_function { /* for SYS_INIT, used when init_entry.dev == NULL */ int (*sys)(void); /* for DEVICE*, used when init_entry.dev != NULL */ int (*dev)(const struct device *dev); }; struct init_entry { /* stores init function (either for SYS_INIT or DEVICE*) union init_function init_fn; /* stores device pointer for DEVICE*, NULL for SYS_INIT. Allows * to know which union entry to call. */ const struct device *dev; } ``` This solution **does not increase ROM usage**, and allows to offer clean public APIs for both SYS_INIT and DEVICE*. Note that however, init machinery keeps a coupling with devices. **NOTE**: This is a breaking change! All `SYS_INIT` functions will need to be converted to the new signature. See the script offered in the following commit. Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> init: convert SYS_INIT functions to the new signature Conversion scripted using scripts/utils/migrate_sys_init.py. Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> manifest: update projects for SYS_INIT changes Update modules with updated SYS_INIT calls: - hal_ti - lvgl - sof - TraceRecorderSource Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> tests: devicetree: devices: adjust test Adjust test according to the recently introduced SYS_INIT infrastructure. Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no> tests: kernel: threads: adjust SYS_INIT call Adjust to the new signature: int (*init_fn)(void); Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2022-10-19 09:33:44 +02:00
static int lwm2m_server_init(void)
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
{
int ret = 0;
server.obj_id = LWM2M_OBJECT_SERVER_ID;
server.version_major = SERVER_VERSION_MAJOR;
server.version_minor = SERVER_VERSION_MINOR;
server.is_core = true;
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
server.fields = fields;
server.field_count = ARRAY_SIZE(fields);
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
server.max_instance_count = MAX_INSTANCE_COUNT;
server.create_cb = server_create;
lwm2m_register_obj(&server);
/* don't create automatically when using bootstrap */
if (!IS_ENABLED(CONFIG_LWM2M_RD_CLIENT_SUPPORT_BOOTSTRAP)) {
struct lwm2m_engine_obj_inst *obj_inst = NULL;
ret = lwm2m_create_obj_inst(LWM2M_OBJECT_SERVER_ID, 0, &obj_inst);
if (ret < 0) {
LOG_ERR("Create LWM2M server instance 0 error: %d", ret);
}
net: lwm2m: initial library support for LWM2M Origin: SICS-IoT / Contiki OS URL: https://github.com/sics-iot/lwm2m-contiki/tree/lwm2m-standalone-dtls commit: d07b0bcd77ec7e8b93787669507f3d86cfbea64a Purpose: Introduction of LwM2M client library. Maintained-by: Zephyr Lightweight Machine-to-Machine (LwM2M) is a protocol stack extension of the Constrained Application Protocol (CoAP) which uses UDP transmission packets. This library was based on source worked on by Joakim Eriksson, Niclas Finne and Joel Hoglund which was adopted by Contiki and then later revamped to work as a stand-alone library. A VERY high level summary of the changes made: - [ALL] sources were re-formatted to Zephyr coding standards - [engine] The engine portion was re-written due to the heavy reliance on ER-CoAP APIs which are not compatible to the Zephyr CoAP APIs as well as other Zephyr specific needs. - [engine] All LWM2M/IPSO object data is now abstracted into resource data which stores information like the data type, length, callbacks to help with read/write. The engine modifies this data directly (or makes callbacks) instead of all of the logic for this living in each object's code. (This wasn't scaling well as I was implementing changes). - [engine] Related to the above change, I also added a generic set of getter/setter functions that user applications can call to change the object data instead of having to add getter/setting methods in each object. - [engine] The original sources shared the engine's context structure quite extensively causing a problem with portability. I broke up the context into it's individual parts: LWM2M path data, input data and output data and pass only the needed data into each set of APIs. - [content format read/writer] sources were re-organized into single .c/h files per content formatter. - [content format read/writer] sources were re-written where necessary to remove the sharing of the lwm2m engine's context and instead only requires the path and input or output data specific to it's function. - [LwM2M objects] re-written using the new engine's abstractions Signed-off-by: Michael Scott <michael.scott@linaro.org>
2017-07-07 11:04:03 -07:00
}
return ret;
}
LWM2M_CORE_INIT(lwm2m_server_init);