zephyr/kernel/include/kernel_internal.h

316 lines
9.3 KiB
C
Raw Permalink Normal View History

unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
/*
* Copyright (c) 2010-2012, 2014-2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*/
/**
* @file
* @brief Architecture-independent private kernel APIs
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*
* This file contains private kernel APIs that are not architecture-specific.
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*/
#ifndef ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_
#define ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#include <zephyr/kernel.h>
headers: Refactor kernel and arch headers. This commit refactors kernel and arch headers to establish a boundary between private and public interface headers. The refactoring strategy used in this commit is detailed in the issue This commit introduces the following major changes: 1. Establish a clear boundary between private and public headers by removing "kernel/include" and "arch/*/include" from the global include paths. Ideally, only kernel/ and arch/*/ source files should reference the headers in these directories. If these headers must be used by a component, these include paths shall be manually added to the CMakeLists.txt file of the component. This is intended to discourage applications from including private kernel and arch headers either knowingly and unknowingly. - kernel/include/ (PRIVATE) This directory contains the private headers that provide private kernel definitions which should not be visible outside the kernel and arch source code. All public kernel definitions must be added to an appropriate header located under include/. - arch/*/include/ (PRIVATE) This directory contains the private headers that provide private architecture-specific definitions which should not be visible outside the arch and kernel source code. All public architecture- specific definitions must be added to an appropriate header located under include/arch/*/. - include/ AND include/sys/ (PUBLIC) This directory contains the public headers that provide public kernel definitions which can be referenced by both kernel and application code. - include/arch/*/ (PUBLIC) This directory contains the public headers that provide public architecture-specific definitions which can be referenced by both kernel and application code. 2. Split arch_interface.h into "kernel-to-arch interface" and "public arch interface" divisions. - kernel/include/kernel_arch_interface.h * provides private "kernel-to-arch interface" definition. * includes arch/*/include/kernel_arch_func.h to ensure that the interface function implementations are always available. * includes sys/arch_interface.h so that public arch interface definitions are automatically included when including this file. - arch/*/include/kernel_arch_func.h * provides architecture-specific "kernel-to-arch interface" implementation. * only the functions that will be used in kernel and arch source files are defined here. - include/sys/arch_interface.h * provides "public arch interface" definition. * includes include/arch/arch_inlines.h to ensure that the architecture-specific public inline interface function implementations are always available. - include/arch/arch_inlines.h * includes architecture-specific arch_inlines.h in include/arch/*/arch_inline.h. - include/arch/*/arch_inline.h * provides architecture-specific "public arch interface" inline function implementation. * supersedes include/sys/arch_inline.h. 3. Refactor kernel and the existing architecture implementations. - Remove circular dependency of kernel and arch headers. The following general rules should be observed: * Never include any private headers from public headers * Never include kernel_internal.h in kernel_arch_data.h * Always include kernel_arch_data.h from kernel_arch_func.h * Never include kernel.h from kernel_struct.h either directly or indirectly. Only add the kernel structures that must be referenced from public arch headers in this file. - Relocate syscall_handler.h to include/ so it can be used in the public code. This is necessary because many user-mode public codes reference the functions defined in this header. - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is necessary to provide architecture-specific thread definition for 'struct k_thread' in kernel.h. - Remove any private header dependencies from public headers using the following methods: * If dependency is not required, simply omit * If dependency is required, - Relocate a portion of the required dependencies from the private header to an appropriate public header OR - Relocate the required private header to make it public. This commit supersedes #20047, addresses #19666, and fixes #3056. Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2019-10-24 17:08:21 +02:00
#include <kernel_arch_interface.h>
#include <string.h>
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#ifndef _ASMLANGUAGE
#ifdef __cplusplus
extern "C" {
#endif
/* Initialize per-CPU kernel data */
void z_init_cpu(int id);
/* Initialize a thread */
void z_init_thread_base(struct _thread_base *thread_base, int priority,
uint32_t initial_state, unsigned int options);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
/* Early boot functions */
void z_early_memset(void *dst, int c, size_t n);
void z_early_memcpy(void *dst, const void *src, size_t n);
void z_bss_zero(void);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#ifdef CONFIG_XIP
void z_data_copy(void);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#else
static inline void z_data_copy(void)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
/* Do nothing */
}
#endif /* CONFIG_XIP */
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
void z_bss_zero_boot(void);
#else
static inline void z_bss_zero_boot(void)
{
/* Do nothing */
}
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
#ifdef CONFIG_LINKER_USE_PINNED_SECTION
void z_bss_zero_pinned(void);
#else
static inline void z_bss_zero_pinned(void)
{
/* Do nothing */
}
#endif /* CONFIG_LINKER_USE_PINNED_SECTION */
FUNC_NORETURN void z_cstart(void);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
void z_device_state_init(void);
extern FUNC_NORETURN void z_thread_entry(k_thread_entry_t entry,
void *p1, void *p2, void *p3);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
extern char *z_setup_new_thread(struct k_thread *new_thread,
k_thread_stack_t *stack, size_t stack_size,
k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, uint32_t options, const char *name);
/**
* @brief Allocate aligned memory from the current thread's resource pool
*
* Threads may be assigned a resource pool, which will be used to allocate
* memory on behalf of certain kernel and driver APIs. Memory reserved
* in this way should be freed with k_free().
*
* If called from an ISR, the k_malloc() system heap will be used if it exists.
*
* @param align Required memory alignment
* @param size Memory allocation size
* @return A pointer to the allocated memory, or NULL if there is insufficient
* RAM in the pool or there is no pool to draw memory from
*/
void *z_thread_aligned_alloc(size_t align, size_t size);
/**
* @brief Allocate some memory from the current thread's resource pool
*
* Threads may be assigned a resource pool, which will be used to allocate
* memory on behalf of certain kernel and driver APIs. Memory reserved
* in this way should be freed with k_free().
*
* If called from an ISR, the k_malloc() system heap will be used if it exists.
*
* @param size Memory allocation size
* @return A pointer to the allocated memory, or NULL if there is insufficient
* RAM in the pool or there is no pool to draw memory from
*/
static inline void *z_thread_malloc(size_t size)
{
return z_thread_aligned_alloc(0, size);
}
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
headers: Refactor kernel and arch headers. This commit refactors kernel and arch headers to establish a boundary between private and public interface headers. The refactoring strategy used in this commit is detailed in the issue This commit introduces the following major changes: 1. Establish a clear boundary between private and public headers by removing "kernel/include" and "arch/*/include" from the global include paths. Ideally, only kernel/ and arch/*/ source files should reference the headers in these directories. If these headers must be used by a component, these include paths shall be manually added to the CMakeLists.txt file of the component. This is intended to discourage applications from including private kernel and arch headers either knowingly and unknowingly. - kernel/include/ (PRIVATE) This directory contains the private headers that provide private kernel definitions which should not be visible outside the kernel and arch source code. All public kernel definitions must be added to an appropriate header located under include/. - arch/*/include/ (PRIVATE) This directory contains the private headers that provide private architecture-specific definitions which should not be visible outside the arch and kernel source code. All public architecture- specific definitions must be added to an appropriate header located under include/arch/*/. - include/ AND include/sys/ (PUBLIC) This directory contains the public headers that provide public kernel definitions which can be referenced by both kernel and application code. - include/arch/*/ (PUBLIC) This directory contains the public headers that provide public architecture-specific definitions which can be referenced by both kernel and application code. 2. Split arch_interface.h into "kernel-to-arch interface" and "public arch interface" divisions. - kernel/include/kernel_arch_interface.h * provides private "kernel-to-arch interface" definition. * includes arch/*/include/kernel_arch_func.h to ensure that the interface function implementations are always available. * includes sys/arch_interface.h so that public arch interface definitions are automatically included when including this file. - arch/*/include/kernel_arch_func.h * provides architecture-specific "kernel-to-arch interface" implementation. * only the functions that will be used in kernel and arch source files are defined here. - include/sys/arch_interface.h * provides "public arch interface" definition. * includes include/arch/arch_inlines.h to ensure that the architecture-specific public inline interface function implementations are always available. - include/arch/arch_inlines.h * includes architecture-specific arch_inlines.h in include/arch/*/arch_inline.h. - include/arch/*/arch_inline.h * provides architecture-specific "public arch interface" inline function implementation. * supersedes include/sys/arch_inline.h. 3. Refactor kernel and the existing architecture implementations. - Remove circular dependency of kernel and arch headers. The following general rules should be observed: * Never include any private headers from public headers * Never include kernel_internal.h in kernel_arch_data.h * Always include kernel_arch_data.h from kernel_arch_func.h * Never include kernel.h from kernel_struct.h either directly or indirectly. Only add the kernel structures that must be referenced from public arch headers in this file. - Relocate syscall_handler.h to include/ so it can be used in the public code. This is necessary because many user-mode public codes reference the functions defined in this header. - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is necessary to provide architecture-specific thread definition for 'struct k_thread' in kernel.h. - Remove any private header dependencies from public headers using the following methods: * If dependency is not required, simply omit * If dependency is required, - Relocate a portion of the required dependencies from the private header to an appropriate public header OR - Relocate the required private header to make it public. This commit supersedes #20047, addresses #19666, and fixes #3056. Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2019-10-24 17:08:21 +02:00
#ifdef CONFIG_USE_SWITCH
/* This is a arch function traditionally, but when the switch-based
* z_swap() is in use it's a simple inline provided by the kernel.
*/
static ALWAYS_INLINE void
arch_thread_return_value_set(struct k_thread *thread, unsigned int value)
headers: Refactor kernel and arch headers. This commit refactors kernel and arch headers to establish a boundary between private and public interface headers. The refactoring strategy used in this commit is detailed in the issue This commit introduces the following major changes: 1. Establish a clear boundary between private and public headers by removing "kernel/include" and "arch/*/include" from the global include paths. Ideally, only kernel/ and arch/*/ source files should reference the headers in these directories. If these headers must be used by a component, these include paths shall be manually added to the CMakeLists.txt file of the component. This is intended to discourage applications from including private kernel and arch headers either knowingly and unknowingly. - kernel/include/ (PRIVATE) This directory contains the private headers that provide private kernel definitions which should not be visible outside the kernel and arch source code. All public kernel definitions must be added to an appropriate header located under include/. - arch/*/include/ (PRIVATE) This directory contains the private headers that provide private architecture-specific definitions which should not be visible outside the arch and kernel source code. All public architecture- specific definitions must be added to an appropriate header located under include/arch/*/. - include/ AND include/sys/ (PUBLIC) This directory contains the public headers that provide public kernel definitions which can be referenced by both kernel and application code. - include/arch/*/ (PUBLIC) This directory contains the public headers that provide public architecture-specific definitions which can be referenced by both kernel and application code. 2. Split arch_interface.h into "kernel-to-arch interface" and "public arch interface" divisions. - kernel/include/kernel_arch_interface.h * provides private "kernel-to-arch interface" definition. * includes arch/*/include/kernel_arch_func.h to ensure that the interface function implementations are always available. * includes sys/arch_interface.h so that public arch interface definitions are automatically included when including this file. - arch/*/include/kernel_arch_func.h * provides architecture-specific "kernel-to-arch interface" implementation. * only the functions that will be used in kernel and arch source files are defined here. - include/sys/arch_interface.h * provides "public arch interface" definition. * includes include/arch/arch_inlines.h to ensure that the architecture-specific public inline interface function implementations are always available. - include/arch/arch_inlines.h * includes architecture-specific arch_inlines.h in include/arch/*/arch_inline.h. - include/arch/*/arch_inline.h * provides architecture-specific "public arch interface" inline function implementation. * supersedes include/sys/arch_inline.h. 3. Refactor kernel and the existing architecture implementations. - Remove circular dependency of kernel and arch headers. The following general rules should be observed: * Never include any private headers from public headers * Never include kernel_internal.h in kernel_arch_data.h * Always include kernel_arch_data.h from kernel_arch_func.h * Never include kernel.h from kernel_struct.h either directly or indirectly. Only add the kernel structures that must be referenced from public arch headers in this file. - Relocate syscall_handler.h to include/ so it can be used in the public code. This is necessary because many user-mode public codes reference the functions defined in this header. - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is necessary to provide architecture-specific thread definition for 'struct k_thread' in kernel.h. - Remove any private header dependencies from public headers using the following methods: * If dependency is not required, simply omit * If dependency is required, - Relocate a portion of the required dependencies from the private header to an appropriate public header OR - Relocate the required private header to make it public. This commit supersedes #20047, addresses #19666, and fixes #3056. Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2019-10-24 17:08:21 +02:00
{
thread->swap_retval = value;
}
#endif
static ALWAYS_INLINE void
z_thread_return_value_set_with_data(struct k_thread *thread,
unsigned int value,
void *data)
{
arch_thread_return_value_set(thread, value);
headers: Refactor kernel and arch headers. This commit refactors kernel and arch headers to establish a boundary between private and public interface headers. The refactoring strategy used in this commit is detailed in the issue This commit introduces the following major changes: 1. Establish a clear boundary between private and public headers by removing "kernel/include" and "arch/*/include" from the global include paths. Ideally, only kernel/ and arch/*/ source files should reference the headers in these directories. If these headers must be used by a component, these include paths shall be manually added to the CMakeLists.txt file of the component. This is intended to discourage applications from including private kernel and arch headers either knowingly and unknowingly. - kernel/include/ (PRIVATE) This directory contains the private headers that provide private kernel definitions which should not be visible outside the kernel and arch source code. All public kernel definitions must be added to an appropriate header located under include/. - arch/*/include/ (PRIVATE) This directory contains the private headers that provide private architecture-specific definitions which should not be visible outside the arch and kernel source code. All public architecture- specific definitions must be added to an appropriate header located under include/arch/*/. - include/ AND include/sys/ (PUBLIC) This directory contains the public headers that provide public kernel definitions which can be referenced by both kernel and application code. - include/arch/*/ (PUBLIC) This directory contains the public headers that provide public architecture-specific definitions which can be referenced by both kernel and application code. 2. Split arch_interface.h into "kernel-to-arch interface" and "public arch interface" divisions. - kernel/include/kernel_arch_interface.h * provides private "kernel-to-arch interface" definition. * includes arch/*/include/kernel_arch_func.h to ensure that the interface function implementations are always available. * includes sys/arch_interface.h so that public arch interface definitions are automatically included when including this file. - arch/*/include/kernel_arch_func.h * provides architecture-specific "kernel-to-arch interface" implementation. * only the functions that will be used in kernel and arch source files are defined here. - include/sys/arch_interface.h * provides "public arch interface" definition. * includes include/arch/arch_inlines.h to ensure that the architecture-specific public inline interface function implementations are always available. - include/arch/arch_inlines.h * includes architecture-specific arch_inlines.h in include/arch/*/arch_inline.h. - include/arch/*/arch_inline.h * provides architecture-specific "public arch interface" inline function implementation. * supersedes include/sys/arch_inline.h. 3. Refactor kernel and the existing architecture implementations. - Remove circular dependency of kernel and arch headers. The following general rules should be observed: * Never include any private headers from public headers * Never include kernel_internal.h in kernel_arch_data.h * Always include kernel_arch_data.h from kernel_arch_func.h * Never include kernel.h from kernel_struct.h either directly or indirectly. Only add the kernel structures that must be referenced from public arch headers in this file. - Relocate syscall_handler.h to include/ so it can be used in the public code. This is necessary because many user-mode public codes reference the functions defined in this header. - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is necessary to provide architecture-specific thread definition for 'struct k_thread' in kernel.h. - Remove any private header dependencies from public headers using the following methods: * If dependency is not required, simply omit * If dependency is required, - Relocate a portion of the required dependencies from the private header to an appropriate public header OR - Relocate the required private header to make it public. This commit supersedes #20047, addresses #19666, and fixes #3056. Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2019-10-24 17:08:21 +02:00
thread->base.swap_data = data;
}
#ifdef CONFIG_SMP
extern void z_smp_init(void);
#ifdef CONFIG_SYS_CLOCK_EXISTS
extern void smp_timer_init(void);
#endif /* CONFIG_SYS_CLOCK_EXISTS */
#endif /* CONFIG_SMP */
extern void z_early_rand_get(uint8_t *buf, size_t length);
#if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
extern int z_stack_adjust_initialized;
#endif /* CONFIG_STACK_POINTER_RANDOM */
extern struct k_thread z_main_thread;
#ifdef CONFIG_MULTITHREADING
extern struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS];
#endif /* CONFIG_MULTITHREADING */
K_KERNEL_PINNED_STACK_ARRAY_DECLARE(z_interrupt_stacks, CONFIG_MP_MAX_NUM_CPUS,
CONFIG_ISR_STACK_SIZE);
#ifdef CONFIG_GEN_PRIV_STACKS
extern uint8_t *z_priv_stack_find(k_thread_stack_t *stack);
#endif /* CONFIG_GEN_PRIV_STACKS */
/* Calculate stack usage. */
int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr);
#ifdef CONFIG_USERSPACE
bool z_stack_is_user_capable(k_thread_stack_t *stack);
/* Memory domain setup hook, called from z_setup_new_thread() */
void z_mem_domain_init_thread(struct k_thread *thread);
/* Memory domain teardown hook, called from z_thread_abort() */
void z_mem_domain_exit_thread(struct k_thread *thread);
/* This spinlock:
*
* - Protects the full set of active k_mem_domain objects and their contents
* - Serializes calls to arch_mem_domain_* APIs
*
* If architecture code needs to access k_mem_domain structures or the
* partitions they contain at any other point, this spinlock should be held.
* Uniprocessor systems can get away with just locking interrupts but this is
* not recommended.
*/
extern struct k_spinlock z_mem_domain_lock;
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_GDBSTUB
struct gdb_ctx;
/* Should be called by the arch layer. This is the gdbstub main loop
* and synchronously communicate with gdb on host.
*/
extern int z_gdb_main_loop(struct gdb_ctx *ctx);
#endif /* CONFIG_GDBSTUB */
#ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
void z_thread_mark_switched_in(void);
void z_thread_mark_switched_out(void);
#else
/**
* @brief Called after a thread has been selected to run
*/
#define z_thread_mark_switched_in()
/**
* @brief Called before a thread has been selected to run
*/
#define z_thread_mark_switched_out()
#endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */
/* Init hook for page frame management, invoked immediately upon entry of
* main thread, before POST_KERNEL tasks
*/
void z_mem_manage_init(void);
/**
* @brief Finalize page frame management at the end of boot process.
*/
void z_mem_manage_boot_finish(void);
void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state);
#ifdef CONFIG_PM
/* When the kernel is about to go idle, it calls this function to notify the
* power management subsystem, that the kernel is ready to enter the idle state.
*
* At this point, the kernel has disabled interrupts and computed the maximum
* time the system can remain idle. The function passes the time that the system
* can remain idle. The SOC interface performs power operations that can be done
* in the available time. The power management operations must halt execution of
* the CPU.
*
* This function assumes that a wake up event has already been set up by the
* application.
*
* This function is entered with interrupts disabled. It should re-enable
* interrupts if it had entered a power state.
*
* @return True if the system suspended, otherwise return false
*/
bool pm_system_suspend(int32_t ticks);
#endif /* CONFIG_PM */
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
/**
* Initialize the timing histograms for demand paging.
*/
void z_paging_histogram_init(void);
/**
* Increment the counter in the timing histogram.
*
* @param hist The timing histogram to be updated.
* @param cycles Time spent in measured operation.
*/
void z_paging_histogram_inc(struct k_mem_paging_histogram_t *hist,
uint32_t cycles);
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
int z_thread_stats_raw(struct k_obj_core *obj_core, void *stats);
int z_thread_stats_query(struct k_obj_core *obj_core, void *stats);
int z_thread_stats_reset(struct k_obj_core *obj_core);
int z_thread_stats_disable(struct k_obj_core *obj_core);
int z_thread_stats_enable(struct k_obj_core *obj_core);
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
int z_cpu_stats_raw(struct k_obj_core *obj_core, void *stats);
int z_cpu_stats_query(struct k_obj_core *obj_core, void *stats);
int z_kernel_stats_raw(struct k_obj_core *obj_core, void *stats);
int z_kernel_stats_query(struct k_obj_core *obj_core, void *stats);
#endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
#if defined(CONFIG_THREAD_ABORT_NEED_CLEANUP)
/**
* Perform cleanup at the end of k_thread_abort().
*
* This performs additional cleanup steps at the end of k_thread_abort()
* where these steps require that the thread is no longer running.
* If the target thread is not the current running thread, the cleanup
* steps will be performed immediately. However, if the target thread is
* the current running thread (e.g. k_thread_abort(_current)), it defers
* the cleanup steps to later when the work will be finished in another
* context.
*
* @param thread Pointer to thread to be cleaned up.
*/
void k_thread_abort_cleanup(struct k_thread *thread);
/**
* Check if thread is the same as the one waiting for cleanup.
*
* This is used to guard against reusing the same thread object
* before the previous cleanup has finished. This will perform
* the necessary cleanups before the thread object can be
* reused. Should mainly be used during thread creation.
*
* @param thread Pointer to thread to be checked.
*/
void k_thread_abort_cleanup_check_reuse(struct k_thread *thread);
#endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#ifdef __cplusplus
}
#endif
#endif /* _ASMLANGUAGE */
#endif /* ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_ */