zephyr/drivers/bluetooth/hci/hci_ambiq.c

419 lines
9.4 KiB
C
Raw Permalink Normal View History

/*
* Copyright (c) 2023 Ambiq Micro Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Ambiq SPI based Bluetooth HCI driver.
*/
#define DT_DRV_COMPAT ambiq_bt_hci_spi
#include <zephyr/init.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/bluetooth/hci_driver.h>
#include <zephyr/bluetooth/hci.h>
#define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(bt_hci_driver);
#include "apollox_blue.h"
#define HCI_SPI_NODE DT_COMPAT_GET_ANY_STATUS_OKAY(ambiq_bt_hci_spi)
#define SPI_DEV_NODE DT_BUS(HCI_SPI_NODE)
/* Offset of special item */
#define PACKET_TYPE 0
#define PACKET_TYPE_SIZE 1
#define EVT_HEADER_TYPE 0
#define EVT_CMD_COMP_OP_LSB 3
#define EVT_CMD_COMP_OP_MSB 4
#define EVT_CMD_COMP_DATA 5
#define EVT_OK 0
#define EVT_DISCARD 1
#define EVT_NOP 2
#define BT_FEAT_SET_BIT(feat, octet, bit) (feat[octet] |= BIT(bit))
#define BT_FEAT_SET_NO_BREDR(feat) BT_FEAT_SET_BIT(feat, 4, 5)
#define BT_FEAT_SET_LE(feat) BT_FEAT_SET_BIT(feat, 4, 6)
/* Max SPI buffer length for transceive operations.
* The maximum TX packet number is 512 bytes data + 12 bytes header.
* The maximum RX packet number is 255 bytes data + 3 header.
*/
#define SPI_MAX_TX_MSG_LEN 524
#define SPI_MAX_RX_MSG_LEN 258
/* The controller may be unavailable to receive packets because it is busy
* on processing something or have packets to send to host. Need to free the
* SPI bus and wait some moment to try again.
*/
#define SPI_BUSY_WAIT_INTERVAL_MS 25
#define SPI_BUSY_TX_ATTEMPTS 200
static uint8_t __noinit rxmsg[SPI_MAX_RX_MSG_LEN];
static const struct device *spi_dev = DEVICE_DT_GET(SPI_DEV_NODE);
static struct spi_config spi_cfg = {
.operation = SPI_OP_MODE_MASTER | SPI_TRANSFER_MSB | SPI_MODE_CPOL | SPI_MODE_CPHA |
SPI_WORD_SET(8),
};
static K_KERNEL_STACK_DEFINE(spi_rx_stack, CONFIG_BT_DRV_RX_STACK_SIZE);
static struct k_thread spi_rx_thread_data;
static struct spi_buf spi_tx_buf;
static struct spi_buf spi_rx_buf;
static const struct spi_buf_set spi_tx = {.buffers = &spi_tx_buf, .count = 1};
static const struct spi_buf_set spi_rx = {.buffers = &spi_rx_buf, .count = 1};
static K_SEM_DEFINE(sem_irq, 0, 1);
static K_SEM_DEFINE(sem_spi_available, 1, 1);
void bt_packet_irq_isr(const struct device *unused1, struct gpio_callback *unused2,
uint32_t unused3)
{
bt_apollo_rcv_isr_preprocess();
k_sem_give(&sem_irq);
}
static inline int bt_spi_transceive(void *tx, uint32_t tx_len, void *rx, uint32_t rx_len)
{
spi_tx_buf.buf = tx;
spi_tx_buf.len = (size_t)tx_len;
spi_rx_buf.buf = rx;
spi_rx_buf.len = (size_t)rx_len;
return spi_transceive(spi_dev, &spi_cfg, &spi_tx, &spi_rx);
}
static int spi_send_packet(uint8_t *data, uint16_t len)
{
int ret;
uint16_t fail_count = 0;
do {
/* Wait for SPI bus to be available */
k_sem_take(&sem_spi_available, K_FOREVER);
/* Send the SPI packet to controller */
ret = bt_apollo_spi_send(data, len, bt_spi_transceive);
/* Free the SPI bus */
k_sem_give(&sem_spi_available);
if (ret) {
/* Give some chance to controller to complete the processing or
* packets sending.
*/
k_sleep(K_MSEC(SPI_BUSY_WAIT_INTERVAL_MS));
} else {
break;
}
} while (fail_count++ < SPI_BUSY_TX_ATTEMPTS);
return ret;
}
static int spi_receive_packet(uint8_t *data, uint16_t *len)
{
int ret;
/* Wait for SPI bus to be available */
k_sem_take(&sem_spi_available, K_FOREVER);
/* Receive the SPI packet from controller */
ret = bt_apollo_spi_rcv(data, len, bt_spi_transceive);
/* Free the SPI bus */
k_sem_give(&sem_spi_available);
return ret;
}
static int hci_event_filter(const uint8_t *evt_data)
{
uint8_t evt_type = evt_data[EVT_HEADER_TYPE];
switch (evt_type) {
case BT_HCI_EVT_LE_META_EVENT: {
uint8_t subevt_type = evt_data[sizeof(struct bt_hci_evt_hdr)];
switch (subevt_type) {
case BT_HCI_EVT_LE_ADVERTISING_REPORT:
return EVT_DISCARD;
default:
return EVT_OK;
}
}
case BT_HCI_EVT_CMD_COMPLETE: {
uint16_t opcode = (uint16_t)(evt_data[EVT_CMD_COMP_OP_LSB] +
(evt_data[EVT_CMD_COMP_OP_MSB] << 8));
switch (opcode) {
case BT_OP_NOP:
return EVT_NOP;
case BT_HCI_OP_READ_LOCAL_FEATURES: {
/* The BLE controller of some Ambiq Apollox Blue SOC may have issue to
* report the expected supported features bitmask successfully, thought the
* features are actually supportive. Need to correct them before going to
* the host stack.
*/
struct bt_hci_rp_read_local_features *rp =
(void *)&evt_data[EVT_CMD_COMP_DATA];
if (rp->status == 0) {
BT_FEAT_SET_NO_BREDR(rp->features);
BT_FEAT_SET_LE(rp->features);
}
return EVT_OK;
}
default:
return EVT_OK;
}
}
default:
return EVT_OK;
}
}
static struct net_buf *bt_hci_evt_recv(uint8_t *data, size_t len)
{
int evt_filter;
bool discardable = false;
struct bt_hci_evt_hdr hdr = {0};
struct net_buf *buf;
size_t buf_tailroom;
if (len < sizeof(hdr)) {
LOG_ERR("Not enough data for event header");
return NULL;
}
evt_filter = hci_event_filter(data);
if (evt_filter == EVT_NOP) {
/* The controller sends NOP event when wakes up based on
* hardware specific requirement, do not post this event to
* host stack.
*/
return NULL;
} else if (evt_filter == EVT_DISCARD) {
discardable = true;
}
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
len -= sizeof(hdr);
if (len != hdr.len) {
LOG_ERR("Event payload length is not correct");
return NULL;
}
buf = bt_buf_get_evt(hdr.evt, discardable, K_NO_WAIT);
if (!buf) {
if (discardable) {
LOG_DBG("Discardable buffer pool full, ignoring event");
} else {
LOG_ERR("No available event buffers!");
}
return buf;
}
net_buf_add_mem(buf, &hdr, sizeof(hdr));
buf_tailroom = net_buf_tailroom(buf);
if (buf_tailroom < len) {
LOG_ERR("Not enough space in buffer %zu/%zu", len, buf_tailroom);
net_buf_unref(buf);
return NULL;
}
net_buf_add_mem(buf, data, len);
return buf;
}
static struct net_buf *bt_hci_acl_recv(uint8_t *data, size_t len)
{
struct bt_hci_acl_hdr hdr = {0};
struct net_buf *buf;
size_t buf_tailroom;
if (len < sizeof(hdr)) {
LOG_ERR("Not enough data for ACL header");
return NULL;
}
buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_NO_WAIT);
if (buf) {
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
len -= sizeof(hdr);
} else {
LOG_ERR("No available ACL buffers!");
return NULL;
}
if (len != sys_le16_to_cpu(hdr.len)) {
LOG_ERR("ACL payload length is not correct");
net_buf_unref(buf);
return NULL;
}
net_buf_add_mem(buf, &hdr, sizeof(hdr));
buf_tailroom = net_buf_tailroom(buf);
if (buf_tailroom < len) {
LOG_ERR("Not enough space in buffer %zu/%zu", len, buf_tailroom);
net_buf_unref(buf);
return NULL;
}
net_buf_add_mem(buf, data, len);
return buf;
}
static void bt_spi_rx_thread(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p1);
ARG_UNUSED(p2);
ARG_UNUSED(p3);
struct net_buf *buf;
int ret;
uint16_t len = 0;
while (true) {
/* Wait for controller interrupt */
k_sem_take(&sem_irq, K_FOREVER);
do {
/* Recevive the HCI packet via SPI */
ret = spi_receive_packet(&rxmsg[0], &len);
if (ret) {
break;
}
/* Check if needs to handle the vendor specific events which are
* incompatible with the standard Bluetooth HCI format.
*/
if (bt_apollo_vnd_rcv_ongoing(&rxmsg[0], len)) {
break;
}
switch (rxmsg[PACKET_TYPE]) {
case BT_HCI_H4_EVT:
buf = bt_hci_evt_recv(&rxmsg[PACKET_TYPE + PACKET_TYPE_SIZE],
(len - PACKET_TYPE_SIZE));
break;
case BT_HCI_H4_ACL:
buf = bt_hci_acl_recv(&rxmsg[PACKET_TYPE + PACKET_TYPE_SIZE],
(len - PACKET_TYPE_SIZE));
break;
default:
buf = NULL;
LOG_WRN("Unknown BT buf type %d", rxmsg[PACKET_TYPE]);
break;
}
/* Post the RX message to host stack to process */
if (buf) {
bt_recv(buf);
}
} while (0);
}
}
static int bt_hci_send(struct net_buf *buf)
{
int ret = 0;
/* Buffer needs an additional byte for type */
if (buf->len >= SPI_MAX_TX_MSG_LEN) {
LOG_ERR("Message too long");
return -EINVAL;
}
switch (bt_buf_get_type(buf)) {
case BT_BUF_ACL_OUT:
net_buf_push_u8(buf, BT_HCI_H4_ACL);
break;
case BT_BUF_CMD:
net_buf_push_u8(buf, BT_HCI_H4_CMD);
break;
default:
LOG_ERR("Unsupported type");
net_buf_unref(buf);
return -EINVAL;
}
/* Send the SPI packet */
ret = spi_send_packet(buf->data, buf->len);
net_buf_unref(buf);
return ret;
}
static int bt_hci_open(void)
{
int ret;
ret = bt_hci_transport_setup(spi_dev);
if (ret) {
return ret;
}
/* Start RX thread */
k_thread_create(&spi_rx_thread_data, spi_rx_stack, K_KERNEL_STACK_SIZEOF(spi_rx_stack),
(k_thread_entry_t)bt_spi_rx_thread, NULL, NULL, NULL,
K_PRIO_COOP(CONFIG_BT_DRIVER_RX_HIGH_PRIO), 0, K_NO_WAIT);
ret = bt_apollo_controller_init(spi_send_packet);
return ret;
}
static int bt_spi_setup(const struct bt_hci_setup_params *params)
{
ARG_UNUSED(params);
int ret;
ret = bt_apollo_vnd_setup();
return ret;
}
static const struct bt_hci_driver drv = {
.name = "ambiq hci",
.bus = BT_HCI_DRIVER_BUS_SPI,
.open = bt_hci_open,
.send = bt_hci_send,
.setup = bt_spi_setup,
};
static int bt_hci_init(void)
{
int ret;
if (!device_is_ready(spi_dev)) {
LOG_ERR("SPI device not ready");
return -ENODEV;
}
ret = bt_apollo_dev_init();
if (ret) {
return ret;
}
bt_hci_driver_register(&drv);
LOG_DBG("BT HCI initialized");
return 0;
}
SYS_INIT(bt_hci_init, POST_KERNEL, CONFIG_BT_HCI_INIT_PRIORITY);