zephyr/kernel/thread.c

927 lines
24 KiB
C
Raw Permalink Normal View History

unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*/
/**
* @file
* @brief Kernel thread support
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*
* This module provides general purpose thread support.
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*/
#include <kernel.h>
#include <spinlock.h>
#include <sys/math_extras.h>
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#include <sys_clock.h>
#include <ksched.h>
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#include <wait_q.h>
#include <syscall_handler.h>
#include <kernel_internal.h>
#include <kswap.h>
#include <init.h>
#include <tracing/tracing.h>
headers: Refactor kernel and arch headers. This commit refactors kernel and arch headers to establish a boundary between private and public interface headers. The refactoring strategy used in this commit is detailed in the issue This commit introduces the following major changes: 1. Establish a clear boundary between private and public headers by removing "kernel/include" and "arch/*/include" from the global include paths. Ideally, only kernel/ and arch/*/ source files should reference the headers in these directories. If these headers must be used by a component, these include paths shall be manually added to the CMakeLists.txt file of the component. This is intended to discourage applications from including private kernel and arch headers either knowingly and unknowingly. - kernel/include/ (PRIVATE) This directory contains the private headers that provide private kernel definitions which should not be visible outside the kernel and arch source code. All public kernel definitions must be added to an appropriate header located under include/. - arch/*/include/ (PRIVATE) This directory contains the private headers that provide private architecture-specific definitions which should not be visible outside the arch and kernel source code. All public architecture- specific definitions must be added to an appropriate header located under include/arch/*/. - include/ AND include/sys/ (PUBLIC) This directory contains the public headers that provide public kernel definitions which can be referenced by both kernel and application code. - include/arch/*/ (PUBLIC) This directory contains the public headers that provide public architecture-specific definitions which can be referenced by both kernel and application code. 2. Split arch_interface.h into "kernel-to-arch interface" and "public arch interface" divisions. - kernel/include/kernel_arch_interface.h * provides private "kernel-to-arch interface" definition. * includes arch/*/include/kernel_arch_func.h to ensure that the interface function implementations are always available. * includes sys/arch_interface.h so that public arch interface definitions are automatically included when including this file. - arch/*/include/kernel_arch_func.h * provides architecture-specific "kernel-to-arch interface" implementation. * only the functions that will be used in kernel and arch source files are defined here. - include/sys/arch_interface.h * provides "public arch interface" definition. * includes include/arch/arch_inlines.h to ensure that the architecture-specific public inline interface function implementations are always available. - include/arch/arch_inlines.h * includes architecture-specific arch_inlines.h in include/arch/*/arch_inline.h. - include/arch/*/arch_inline.h * provides architecture-specific "public arch interface" inline function implementation. * supersedes include/sys/arch_inline.h. 3. Refactor kernel and the existing architecture implementations. - Remove circular dependency of kernel and arch headers. The following general rules should be observed: * Never include any private headers from public headers * Never include kernel_internal.h in kernel_arch_data.h * Always include kernel_arch_data.h from kernel_arch_func.h * Never include kernel.h from kernel_struct.h either directly or indirectly. Only add the kernel structures that must be referenced from public arch headers in this file. - Relocate syscall_handler.h to include/ so it can be used in the public code. This is necessary because many user-mode public codes reference the functions defined in this header. - Relocate kernel_arch_thread.h to include/arch/*/thread.h. This is necessary to provide architecture-specific thread definition for 'struct k_thread' in kernel.h. - Remove any private header dependencies from public headers using the following methods: * If dependency is not required, simply omit * If dependency is required, - Relocate a portion of the required dependencies from the private header to an appropriate public header OR - Relocate the required private header to make it public. This commit supersedes #20047, addresses #19666, and fixes #3056. Signed-off-by: Stephanos Ioannidis <root@stephanos.io>
2019-10-24 17:08:21 +02:00
#include <string.h>
#include <stdbool.h>
#include <irq_offload.h>
#include <sys/check.h>
#include <random/rand32.h>
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#ifdef CONFIG_THREAD_MONITOR
/* This lock protects the linked list of active threads; i.e. the
* initial _kernel.threads pointer and the linked list made up of
* thread->next_thread (until NULL)
*/
static struct k_spinlock z_thread_monitor_lock;
#endif /* CONFIG_THREAD_MONITOR */
#define _FOREACH_STATIC_THREAD(thread_data) \
Z_STRUCT_SECTION_FOREACH(_static_thread_data, thread_data)
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
{
#if defined(CONFIG_THREAD_MONITOR)
struct k_thread *thread;
k_spinlock_key_t key;
__ASSERT(user_cb != NULL, "user_cb can not be NULL");
/*
* Lock is needed to make sure that the _kernel.threads is not being
* modified by the user_cb either directly or indirectly.
* The indirect ways are through calling k_thread_create and
* k_thread_abort from user_cb.
*/
key = k_spin_lock(&z_thread_monitor_lock);
for (thread = _kernel.threads; thread; thread = thread->next_thread) {
user_cb(thread, user_data);
}
k_spin_unlock(&z_thread_monitor_lock, key);
#endif
}
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
{
#if defined(CONFIG_THREAD_MONITOR)
struct k_thread *thread;
k_spinlock_key_t key;
__ASSERT(user_cb != NULL, "user_cb can not be NULL");
key = k_spin_lock(&z_thread_monitor_lock);
for (thread = _kernel.threads; thread; thread = thread->next_thread) {
k_spin_unlock(&z_thread_monitor_lock, key);
user_cb(thread, user_data);
key = k_spin_lock(&z_thread_monitor_lock);
}
k_spin_unlock(&z_thread_monitor_lock, key);
#endif
}
bool k_is_in_isr(void)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
return arch_is_in_isr();
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
/*
* This function tags the current thread as essential to system operation.
* Exceptions raised by this thread will be treated as a fatal system error.
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*/
void z_thread_essential_set(void)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
_current->base.user_options |= K_ESSENTIAL;
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
/*
* This function tags the current thread as not essential to system operation.
* Exceptions raised by this thread may be recoverable.
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
* (This is the default tag for a thread.)
*/
void z_thread_essential_clear(void)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
_current->base.user_options &= ~K_ESSENTIAL;
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
/*
* This routine indicates if the current thread is an essential system thread.
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*
* Returns true if current thread is essential, false if it is not.
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*/
bool z_is_thread_essential(void)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
return (_current->base.user_options & K_ESSENTIAL) == K_ESSENTIAL;
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
void z_impl_k_busy_wait(uint32_t usec_to_wait)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
#if !defined(CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
/* use 64-bit math to prevent overflow when multiplying */
uint32_t cycles_to_wait = (uint32_t)(
(uint64_t)usec_to_wait *
(uint64_t)sys_clock_hw_cycles_per_sec() /
(uint64_t)USEC_PER_SEC
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
);
uint32_t start_cycles = k_cycle_get_32();
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
for (;;) {
uint32_t current_cycles = k_cycle_get_32();
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
#else
arch_busy_wait(usec_to_wait);
#endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_busy_wait(uint32_t usec_to_wait)
{
z_impl_k_busy_wait(usec_to_wait);
}
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
#include <syscalls/k_busy_wait_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_SYS_CLOCK_EXISTS */
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#ifdef CONFIG_THREAD_CUSTOM_DATA
void z_impl_k_thread_custom_data_set(void *value)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
_current->custom_data = value;
}
#ifdef CONFIG_USERSPACE
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
static inline void z_vrfy_k_thread_custom_data_set(void *data)
{
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
z_impl_k_thread_custom_data_set(data);
}
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
#include <syscalls/k_thread_custom_data_set_mrsh.c>
#endif
void *z_impl_k_thread_custom_data_get(void)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
return _current->custom_data;
}
#ifdef CONFIG_USERSPACE
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
static inline void *z_vrfy_k_thread_custom_data_get(void)
{
return z_impl_k_thread_custom_data_get();
}
#include <syscalls/k_thread_custom_data_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#endif /* CONFIG_THREAD_CUSTOM_DATA */
#if defined(CONFIG_THREAD_MONITOR)
/*
* Remove a thread from the kernel's list of active threads.
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
*/
void z_thread_monitor_exit(struct k_thread *thread)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);
kernel/arch: consolidate tTCS and TNANO definitions There was a lot of duplication between architectures for the definition of threads and the "nanokernel" guts. These have been consolidated. Now, a common file kernel/unified/include/kernel_structs.h holds the common definitions. Architectures provide two files to complement it: kernel_arch_data.h and kernel_arch_func.h. The first one contains at least the struct _thread_arch and struct _kernel_arch data structures, as well as the struct _callee_saved and struct _caller_saved register layouts. The second file contains anything that needs what is provided by the common stuff in kernel_structs.h. Those two files are only meant to be included in kernel_structs.h in very specific locations. The thread data structure has been separated into three major parts: common struct _thread_base and struct k_thread, and arch-specific struct _thread_arch. The first and third ones are included in the second. The struct s_NANO data structure has been split into two: common struct _kernel and arch-specific struct _kernel_arch. The latter is included in the former. Offsets files have also changed: nano_offsets.h has been renamed kernel_offsets.h and is still included by the arch-specific offsets.c. Also, since the thread and kernel data structures are now made of sub-structures, offsets have to be added to make up the full offset. Some of these additions have been consolidated in shorter symbols, available from kernel/unified/include/offsets_short.h, which includes an arch-specific offsets_arch_short.h. Most of the code include offsets_short.h now instead of offsets.h. Change-Id: I084645cb7e6db8db69aeaaf162963fe157045d5a Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-11-08 16:36:50 +01:00
if (thread == _kernel.threads) {
_kernel.threads = _kernel.threads->next_thread;
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
} else {
struct k_thread *prev_thread;
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
kernel/arch: consolidate tTCS and TNANO definitions There was a lot of duplication between architectures for the definition of threads and the "nanokernel" guts. These have been consolidated. Now, a common file kernel/unified/include/kernel_structs.h holds the common definitions. Architectures provide two files to complement it: kernel_arch_data.h and kernel_arch_func.h. The first one contains at least the struct _thread_arch and struct _kernel_arch data structures, as well as the struct _callee_saved and struct _caller_saved register layouts. The second file contains anything that needs what is provided by the common stuff in kernel_structs.h. Those two files are only meant to be included in kernel_structs.h in very specific locations. The thread data structure has been separated into three major parts: common struct _thread_base and struct k_thread, and arch-specific struct _thread_arch. The first and third ones are included in the second. The struct s_NANO data structure has been split into two: common struct _kernel and arch-specific struct _kernel_arch. The latter is included in the former. Offsets files have also changed: nano_offsets.h has been renamed kernel_offsets.h and is still included by the arch-specific offsets.c. Also, since the thread and kernel data structures are now made of sub-structures, offsets have to be added to make up the full offset. Some of these additions have been consolidated in shorter symbols, available from kernel/unified/include/offsets_short.h, which includes an arch-specific offsets_arch_short.h. Most of the code include offsets_short.h now instead of offsets.h. Change-Id: I084645cb7e6db8db69aeaaf162963fe157045d5a Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-11-08 16:36:50 +01:00
prev_thread = _kernel.threads;
while ((prev_thread != NULL) &&
(thread != prev_thread->next_thread)) {
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
prev_thread = prev_thread->next_thread;
}
if (prev_thread != NULL) {
prev_thread->next_thread = thread->next_thread;
}
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
k_spin_unlock(&z_thread_monitor_lock, key);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
#endif
int z_impl_k_thread_name_set(struct k_thread *thread, const char *value)
{
#ifdef CONFIG_THREAD_NAME
if (thread == NULL) {
thread = _current;
}
strncpy(thread->name, value, CONFIG_THREAD_MAX_NAME_LEN);
thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
sys_trace_thread_name_set(thread);
return 0;
#else
ARG_UNUSED(thread);
ARG_UNUSED(value);
return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
#ifdef CONFIG_USERSPACE
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
static inline int z_vrfy_k_thread_name_set(struct k_thread *t, const char *str)
{
#ifdef CONFIG_THREAD_NAME
size_t len;
int err;
if (t != NULL) {
if (Z_SYSCALL_OBJ(t, K_OBJ_THREAD) != 0) {
return -EINVAL;
}
}
len = z_user_string_nlen(str, CONFIG_THREAD_MAX_NAME_LEN, &err);
if (err != 0) {
return -EFAULT;
}
if (Z_SYSCALL_MEMORY_READ(str, len) != 0) {
return -EFAULT;
}
return z_impl_k_thread_name_set(t, str);
#else
return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
#include <syscalls/k_thread_name_set_mrsh.c>
#endif /* CONFIG_USERSPACE */
const char *k_thread_name_get(struct k_thread *thread)
{
#ifdef CONFIG_THREAD_NAME
return (const char *)thread->name;
#else
ARG_UNUSED(thread);
return NULL;
#endif /* CONFIG_THREAD_NAME */
}
int z_impl_k_thread_name_copy(k_tid_t thread_id, char *buf, size_t size)
{
#ifdef CONFIG_THREAD_NAME
strncpy(buf, thread_id->name, size);
return 0;
#else
ARG_UNUSED(thread_id);
ARG_UNUSED(buf);
ARG_UNUSED(size);
return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
const char *k_thread_state_str(k_tid_t thread_id)
{
switch (thread_id->base.thread_state) {
case 0:
return "";
break;
case _THREAD_DUMMY:
return "dummy";
break;
case _THREAD_PENDING:
return "pending";
break;
case _THREAD_PRESTART:
return "prestart";
break;
case _THREAD_DEAD:
return "dead";
break;
case _THREAD_SUSPENDED:
return "suspended";
break;
case _THREAD_ABORTING:
return "aborting";
break;
case _THREAD_QUEUED:
return "queued";
break;
}
return "unknown";
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_k_thread_name_copy(k_tid_t thread,
char *buf, size_t size)
{
#ifdef CONFIG_THREAD_NAME
size_t len;
struct z_object *ko = z_object_find(thread);
/* Special case: we allow reading the names of initialized threads
* even if we don't have permission on them
*/
if (thread == NULL || ko->type != K_OBJ_THREAD ||
(ko->flags & K_OBJ_FLAG_INITIALIZED) == 0) {
return -EINVAL;
}
if (Z_SYSCALL_MEMORY_WRITE(buf, size) != 0) {
return -EFAULT;
}
len = strlen(thread->name);
if (len + 1 > size) {
return -ENOSPC;
}
return z_user_to_copy((void *)buf, thread->name, len + 1);
#else
ARG_UNUSED(thread);
ARG_UNUSED(buf);
ARG_UNUSED(size);
return -ENOSYS;
#endif /* CONFIG_THREAD_NAME */
}
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
#include <syscalls/k_thread_name_copy_mrsh.c>
#endif /* CONFIG_USERSPACE */
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#ifdef CONFIG_STACK_SENTINEL
/* Check that the stack sentinel is still present
*
* The stack sentinel feature writes a magic value to the lowest 4 bytes of
* the thread's stack when the thread is initialized. This value gets checked
* in a few places:
*
* 1) In k_yield() if the current thread is not swapped out
* 2) After servicing a non-nested interrupt
* 3) In z_swap(), check the sentinel in the outgoing thread
*
* Item 2 requires support in arch/ code.
*
* If the check fails, the thread will be terminated appropriately through
* the system fatal error handler.
*/
void z_check_stack_sentinel(void)
{
uint32_t *stack;
if ((_current->base.thread_state & _THREAD_DUMMY) != 0) {
return;
}
stack = (uint32_t *)_current->stack_info.start;
if (*stack != STACK_SENTINEL) {
/* Restore it so further checks don't trigger this same error */
*stack = STACK_SENTINEL;
z_except_reason(K_ERR_STACK_CHK_FAIL);
}
}
#endif
#ifdef CONFIG_MULTITHREADING
void z_impl_k_thread_start(struct k_thread *thread)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
z_sched_start(thread);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
#ifdef CONFIG_USERSPACE
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
static inline void z_vrfy_k_thread_start(struct k_thread *thread)
{
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
return z_impl_k_thread_start(thread);
}
#include <syscalls/k_thread_start_mrsh.c>
#endif
#endif
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#ifdef CONFIG_MULTITHREADING
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
static void schedule_new_thread(struct k_thread *thread, k_timeout_t delay)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
if (K_TIMEOUT_EQ(delay, K_NO_WAIT)) {
k_thread_start(thread);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
} else {
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
#ifdef CONFIG_LEGACY_TIMEOUT_API
delay = _TICK_ALIGN + k_ms_to_ticks_ceil32(delay);
#endif
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
z_add_thread_timeout(thread, delay);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
#else
ARG_UNUSED(delay);
k_thread_start(thread);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#endif
}
#endif
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#if !CONFIG_STACK_POINTER_RANDOM
static inline size_t adjust_stack_size(size_t stack_size)
{
return stack_size;
}
#else
int z_stack_adjust_initialized;
static inline size_t adjust_stack_size(size_t stack_size)
{
size_t random_val;
if (!z_stack_adjust_initialized) {
z_early_boot_rand_get((uint8_t *)&random_val, sizeof(random_val));
} else {
sys_rand_get((uint8_t *)&random_val, sizeof(random_val));
}
/* Don't need to worry about alignment of the size here,
* arch_new_thread() is required to do it.
*
* FIXME: Not the best way to get a random number in a range.
* See #6493
*/
const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM;
if (unlikely(fuzz * 2 > stack_size)) {
return stack_size;
}
return stack_size - fuzz;
}
#if defined(CONFIG_STACK_GROWS_UP)
/* This is so rare not bothering for now */
#error "Stack pointer randomization not implemented for upward growing stacks"
#endif /* CONFIG_STACK_GROWS_UP */
#endif /* CONFIG_STACK_POINTER_RANDOM */
/*
* Note:
* The caller must guarantee that the stack_size passed here corresponds
* to the amount of stack memory available for the thread.
*/
void z_setup_new_thread(struct k_thread *new_thread,
k_thread_stack_t *stack, size_t stack_size,
k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, uint32_t options, const char *name)
{
Z_ASSERT_VALID_PRIO(prio, entry);
#ifdef CONFIG_USERSPACE
z_object_init(new_thread);
z_object_init(stack);
new_thread->stack_obj = stack;
new_thread->mem_domain_info.mem_domain = NULL;
new_thread->syscall_frame = NULL;
/* Any given thread has access to itself */
k_object_access_grant(new_thread, new_thread);
#endif
stack_size = adjust_stack_size(stack_size);
z_waitq_init(&new_thread->base.join_waiters);
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
#ifndef CONFIG_THREAD_USERSPACE_LOCAL_DATA_ARCH_DEFER_SETUP
/* reserve space on top of stack for local data */
stack_size = Z_STACK_PTR_ALIGN(stack_size
- sizeof(*new_thread->userspace_local_data));
#endif
#endif
/* Initialize various struct k_thread members */
z_init_thread_base(&new_thread->base, prio, _THREAD_PRESTART, options);
arch_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
prio, options);
/* static threads overwrite it afterwards with real value */
new_thread->init_data = NULL;
new_thread->fn_abort = NULL;
#ifdef CONFIG_USE_SWITCH
/* switch_handle must be non-null except when inside z_swap()
* for synchronization reasons. Historically some notional
* USE_SWITCH architectures have actually ignored the field
*/
__ASSERT(new_thread->switch_handle != NULL,
"arch layer failed to initialize switch_handle");
#endif
#ifdef CONFIG_STACK_SENTINEL
/* Put the stack sentinel at the lowest 4 bytes of the stack area.
* We periodically check that it's still present and kill the thread
* if it isn't.
*/
*((uint32_t *)new_thread->stack_info.start) = STACK_SENTINEL;
#endif /* CONFIG_STACK_SENTINEL */
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
#ifndef CONFIG_THREAD_USERSPACE_LOCAL_DATA_ARCH_DEFER_SETUP
/* don't set again if the arch's own code in arch_new_thread() has
* already set the pointer.
*/
new_thread->userspace_local_data =
(struct _thread_userspace_local_data *)
(Z_THREAD_STACK_BUFFER(stack) + stack_size);
#endif
#endif
#ifdef CONFIG_THREAD_CUSTOM_DATA
/* Initialize custom data field (value is opaque to kernel) */
new_thread->custom_data = NULL;
#endif
#ifdef CONFIG_THREAD_MONITOR
new_thread->entry.pEntry = entry;
new_thread->entry.parameter1 = p1;
new_thread->entry.parameter2 = p2;
new_thread->entry.parameter3 = p3;
k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);
new_thread->next_thread = _kernel.threads;
_kernel.threads = new_thread;
k_spin_unlock(&z_thread_monitor_lock, key);
#endif
#ifdef CONFIG_THREAD_NAME
if (name != NULL) {
strncpy(new_thread->name, name,
CONFIG_THREAD_MAX_NAME_LEN - 1);
/* Ensure NULL termination, truncate if longer */
new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
} else {
new_thread->name[0] = '\0';
}
#endif
#ifdef CONFIG_SCHED_CPU_MASK
new_thread->base.cpu_mask = -1;
#endif
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
/* _current may be null if the dummy thread is not used */
if (!_current) {
new_thread->resource_pool = NULL;
return;
}
#endif
#ifdef CONFIG_USERSPACE
/* New threads inherit any memory domain membership by the parent */
if (_current->mem_domain_info.mem_domain != NULL) {
k_mem_domain_add_thread(_current->mem_domain_info.mem_domain,
new_thread);
}
if ((options & K_INHERIT_PERMS) != 0U) {
z_thread_perms_inherit(_current, new_thread);
}
#endif
#ifdef CONFIG_SCHED_DEADLINE
new_thread->base.prio_deadline = 0;
#endif
new_thread->resource_pool = _current->resource_pool;
sys_trace_thread_create(new_thread);
}
#ifdef CONFIG_MULTITHREADING
k_tid_t z_impl_k_thread_create(struct k_thread *new_thread,
k_thread_stack_t *stack,
size_t stack_size, k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, uint32_t options, k_timeout_t delay)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
__ASSERT(!arch_is_in_isr(), "Threads may not be created in ISRs");
/* Special case, only for unit tests */
#if defined(CONFIG_TEST) && defined(CONFIG_ARCH_HAS_USERSPACE) && !defined(CONFIG_USERSPACE)
__ASSERT((options & K_USER) == 0,
"Platform is capable of user mode, and test thread created with K_USER option,"
" but neither CONFIG_TEST_USERSPACE nor CONFIG_USERSPACE is set\n");
#endif
z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
prio, options, NULL);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
schedule_new_thread(new_thread, delay);
}
return new_thread;
}
#ifdef CONFIG_USERSPACE
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
k_tid_t z_vrfy_k_thread_create(struct k_thread *new_thread,
k_thread_stack_t *stack,
size_t stack_size, k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, uint32_t options, k_timeout_t delay)
{
size_t total_size, stack_obj_size;
struct z_object *stack_object;
/* The thread and stack objects *must* be in an uninitialized state */
Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));
stack_object = z_object_find(stack);
Z_OOPS(Z_SYSCALL_VERIFY_MSG(z_obj_validation_check(stack_object, stack,
K_OBJ_THREAD_STACK_ELEMENT,
_OBJ_INIT_FALSE) == 0,
"bad stack object"));
/* Verify that the stack size passed in is OK by computing the total
* size and comparing it with the size value in the object metadata
*/
Z_OOPS(Z_SYSCALL_VERIFY_MSG(!size_add_overflow(K_THREAD_STACK_RESERVED,
stack_size, &total_size),
"stack size overflow (%zu+%zu)",
stack_size,
K_THREAD_STACK_RESERVED));
/* Testing less-than-or-equal since additional room may have been
* allocated for alignment constraints
*/
#ifdef CONFIG_GEN_PRIV_STACKS
stack_obj_size = stack_object->data.stack_data->size;
#else
stack_obj_size = stack_object->data.stack_size;
#endif
Z_OOPS(Z_SYSCALL_VERIFY_MSG(total_size <= stack_obj_size,
"stack size %zu is too big, max is %zu",
total_size, stack_obj_size));
/* User threads may only create other user threads and they can't
* be marked as essential
*/
Z_OOPS(Z_SYSCALL_VERIFY(options & K_USER));
Z_OOPS(Z_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));
/* Check validity of prio argument; must be the same or worse priority
* than the caller
*/
Z_OOPS(Z_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
Z_OOPS(Z_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio,
_current->base.prio)));
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
z_setup_new_thread(new_thread, stack, stack_size,
entry, p1, p2, p3, prio, options, NULL);
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
schedule_new_thread(new_thread, delay);
}
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
return new_thread;
}
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
#include <syscalls/k_thread_create_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_MULTITHREADING */
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
#ifdef CONFIG_MULTITHREADING
#ifdef CONFIG_USERSPACE
static void grant_static_access(void)
{
Z_STRUCT_SECTION_FOREACH(z_object_assignment, pos) {
for (int i = 0; pos->objects[i] != NULL; i++) {
k_object_access_grant(pos->objects[i],
pos->thread);
}
}
}
#endif /* CONFIG_USERSPACE */
void z_init_static_threads(void)
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
{
_FOREACH_STATIC_THREAD(thread_data) {
z_setup_new_thread(
thread_data->init_thread,
thread_data->init_stack,
thread_data->init_stack_size,
thread_data->init_entry,
thread_data->init_p1,
thread_data->init_p2,
thread_data->init_p3,
thread_data->init_prio,
thread_data->init_options,
thread_data->init_name);
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
thread_data->init_thread->init_data = thread_data;
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
#ifdef CONFIG_USERSPACE
grant_static_access();
#endif
/*
* Non-legacy static threads may be started immediately or
* after a previously specified delay. Even though the
* scheduler is locked, ticks can still be delivered and
* processed. Take a sched lock to prevent them from running
* until they are all started.
*
* Note that static threads defined using the legacy API have a
* delay of K_FOREVER.
*/
k_sched_lock();
_FOREACH_STATIC_THREAD(thread_data) {
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
if (thread_data->init_delay != K_TICKS_FOREVER) {
schedule_new_thread(thread_data->init_thread,
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
K_MSEC(thread_data->init_delay));
}
}
k_sched_unlock();
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
}
#endif
unified: initial unified kernel implementation Summary of what this includes: initialization: Copy from nano_init.c, with the following changes: - the main thread is the continuation of the init thread, but an idle thread is created as well - _main() initializes threads in groups and starts the EXE group - the ready queues are initialized - the main thread is marked as non-essential once the system init is done - a weak main() symbol is provided if the application does not provide a main() function scheduler: Not an exhaustive list, but basically provide primitives for: - adding/removing a thread to/from a wait queue - adding/removing a thread to/from the ready queue - marking thread as ready - locking/unlocking the scheduler - instead of locking interrupts - getting/setting thread priority - checking what state (coop/preempt) a thread is currenlty running in - rescheduling threads - finding what thread is the next to run - yielding/sleeping/aborting sleep - finding the current thread threads: - Add operationns on threads, such as creating and starting them. standardized handling of kernel object return codes: - Kernel objects now cause _Swap() to return the following values: 0 => operation successful -EAGAIN => operation timed out -Exxxxx => operation failed for another reason - The thread's swap_data field can be used to return any additional information required to complete the operation, such as the actual result of a successful operation. timeouts: - same as nano timeouts, renamed to simply 'timeouts' - the kernel is still tick-based, but objects take timeout values in ms for forward compatibility with a tickless kernel. semaphores: - Port of the nanokernel semaphores, which have the same basic behaviour as the microkernel ones. Semaphore groups are not yet implemented. - These semaphores are enhanced in that they accept an initial count and a count limit. This allows configuring them as binary semaphores, and also provisioning them without having to "give" the semaphore multiple times before using them. mutexes: - Straight port of the microkernel mutexes. An init function is added to allow defining them at runtime. pipes: - straight port timers: - amalgamation of nano and micro timers, with all functionalities intact. events: - re-implementation, using semaphores and workqueues. mailboxes: - straight port message queues: - straight port of microkernel FIFOs memory maps: - straight port workqueues: - Basically, have all APIs follow the k_ naming rule, and use the _timeout subsystem from the unified kernel directory, and not the _nano_timeout one. stacks: - Port of the nanokernel stacks. They can now have multiple threads pending on them and threads can wait with a timeout. LIFOs: - Straight port of the nanokernel LIFOs. FIFOs: - Straight port of the nanokernel FIFOs. Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com> Peter Mitsis <peter.mitsis@windriver.com> Allan Stephens <allan.stephens@windriver.com> Benjamin Walsh <benjamin.walsh@windriver.com> Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6 Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 00:55:39 +02:00
void z_init_thread_base(struct _thread_base *thread_base, int priority,
uint32_t initial_state, unsigned int options)
{
/* k_q_node is initialized upon first insertion in a list */
thread_base->user_options = (uint8_t)options;
thread_base->thread_state = (uint8_t)initial_state;
thread_base->prio = priority;
thread_base->sched_locked = 0U;
#ifdef CONFIG_SMP
thread_base->is_idle = 0;
#endif
/* swap_data does not need to be initialized */
z_init_thread_timeout(thread_base);
}
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
void *p1, void *p2, void *p3)
{
_current->base.user_options |= K_USER;
z_thread_essential_clear();
#ifdef CONFIG_THREAD_MONITOR
_current->entry.pEntry = entry;
_current->entry.parameter1 = p1;
_current->entry.parameter2 = p2;
_current->entry.parameter3 = p3;
#endif
#ifdef CONFIG_USERSPACE
memset(_current->userspace_local_data, 0,
sizeof(struct _thread_userspace_local_data));
arch_user_mode_enter(entry, p1, p2, p3);
#else
/* XXX In this case we do not reset the stack */
z_thread_entry(entry, p1, p2, p3);
#endif
}
/* These spinlock assertion predicates are defined here because having
* them in spinlock.h is a giant header ordering headache.
*/
#ifdef CONFIG_SPIN_VALIDATE
bool z_spin_lock_valid(struct k_spinlock *l)
{
uintptr_t thread_cpu = l->thread_cpu;
if (thread_cpu) {
if ((thread_cpu & 3) == _current_cpu->id) {
return false;
}
}
return true;
}
bool z_spin_unlock_valid(struct k_spinlock *l)
{
if (l->thread_cpu != (_current_cpu->id | (uintptr_t)_current)) {
return false;
}
l->thread_cpu = 0;
return true;
}
void z_spin_lock_set_owner(struct k_spinlock *l)
{
l->thread_cpu = _current_cpu->id | (uintptr_t)_current;
}
#endif /* CONFIG_SPIN_VALIDATE */
int z_impl_k_float_disable(struct k_thread *thread)
{
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
return arch_float_disable(thread);
#else
return -ENOSYS;
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
}
#ifdef CONFIG_USERSPACE
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
static inline int z_vrfy_k_float_disable(struct k_thread *thread)
{
userspace: Support for split 64 bit arguments System call arguments, at the arch layer, are single words. So passing wider values requires splitting them into two registers at call time. This gets even more complicated for values (e.g k_timeout_t) that may have different sizes depending on configuration. This patch adds a feature to gen_syscalls.py to detect functions with wide arguments and automatically generates code to split/unsplit them. Unfortunately the current scheme of Z_SYSCALL_DECLARE_* macros won't work with functions like this, because for N arguments (our current maximum N is 10) there are 2^N possible configurations of argument widths. So this generates the complete functions for each handler and wrapper, effectively doing in python what was originally done in the preprocessor. Another complexity is that traditional the z_hdlr_*() function for a system call has taken the raw list of word arguments, which does not work when some of those arguments must be 64 bit types. So instead of using a single Z_SYSCALL_HANDLER macro, this splits the job of z_hdlr_*() into two steps: An automatically-generated unmarshalling function, z_mrsh_*(), which then calls a user-supplied verification function z_vrfy_*(). The verification function is typesafe, and is a simple C function with exactly the same argument and return signature as the syscall impl function. It is also not responsible for validating the pointers to the extra parameter array or a wide return value, that code gets automatically generated. This commit includes new vrfy/msrh handling for all syscalls invoked during CI runs. Future commits will port the less testable code. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-08-06 22:34:31 +02:00
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
return z_impl_k_float_disable(thread);
}
#include <syscalls/k_float_disable_mrsh.c>
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_IRQ_OFFLOAD
static K_SEM_DEFINE(offload_sem, 1, 1);
void irq_offload(irq_offload_routine_t routine, void *parameter)
{
k_sem_take(&offload_sem, K_FOREVER);
arch_irq_offload(routine, parameter);
k_sem_give(&offload_sem);
}
#endif
#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
#ifdef CONFIG_STACK_GROWS_UP
#error "Unsupported configuration for stack analysis"
#endif
int z_impl_k_thread_stack_space_get(const struct k_thread *thread,
size_t *unused_ptr)
{
const uint8_t *start = (uint8_t *)thread->stack_info.start;
size_t size = thread->stack_info.size;
size_t unused = 0;
const uint8_t *checked_stack = start;
/* Take the address of any local variable as a shallow bound for the
* stack pointer. Addresses above it are guaranteed to be
* accessible.
*/
const uint8_t *stack_pointer = (const uint8_t *)&start;
/* If we are currently running on the stack being analyzed, some
* memory management hardware will generate an exception if we
* read unused stack memory.
*
* This never happens when invoked from user mode, as user mode
* will always run this function on the privilege elevation stack.
*/
if ((stack_pointer > start) && (stack_pointer <= (start + size)) &&
IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) {
/* TODO: We could add an arch_ API call to temporarily
* disable the stack checking in the CPU, but this would
* need to be properly managed wrt context switches/interrupts
*/
return -ENOTSUP;
}
if (IS_ENABLED(CONFIG_STACK_SENTINEL)) {
/* First 4 bytes of the stack buffer reserved for the
* sentinel value, it won't be 0xAAAAAAAA for thread
* stacks.
*
* FIXME: thread->stack_info.start ought to reflect
* this!
*/
checked_stack += 4;
size -= 4;
}
for (size_t i = 0; i < size; i++) {
if ((checked_stack[i]) == 0xaaU) {
unused++;
} else {
break;
}
}
*unused_ptr = unused;
return 0;
}
#ifdef CONFIG_USERSPACE
int z_vrfy_k_thread_stack_space_get(const struct k_thread *thread,
size_t *unused_ptr)
{
size_t unused;
int ret;
ret = Z_SYSCALL_OBJ(thread, K_OBJ_THREAD);
CHECKIF(ret != 0) {
return ret;
}
ret = z_impl_k_thread_stack_space_get(thread, &unused);
CHECKIF(ret != 0) {
return ret;
}
ret = z_user_to_copy(unused_ptr, &unused, sizeof(size_t));
CHECKIF(ret != 0) {
return ret;
}
return 0;
}
#include <syscalls/k_thread_stack_space_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_INIT_STACKS && CONFIG_THREAD_STACK_INFO */
#ifdef CONFIG_USERSPACE
static inline k_ticks_t z_vrfy_k_thread_timeout_remaining_ticks(
struct k_thread *t)
{
Z_OOPS(Z_SYSCALL_OBJ(t, K_OBJ_THREAD));
return z_impl_k_thread_timeout_remaining_ticks(t);
}
#include <syscalls/k_thread_timeout_remaining_ticks_mrsh.c>
static inline k_ticks_t z_vrfy_k_thread_timeout_expires_ticks(
struct k_thread *t)
{
Z_OOPS(Z_SYSCALL_OBJ(t, K_OBJ_THREAD));
return z_impl_k_thread_timeout_expires_ticks(t);
}
#include <syscalls/k_thread_timeout_expires_ticks_mrsh.c>
#endif