zephyr/include/sys_clock.h

236 lines
6.6 KiB
C
Raw Permalink Normal View History

/*
* Copyright (c) 2014-2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Variables needed needed for system clock
*
*
* Declare variables used by both system timer device driver and kernel
* components that use timer functionality.
*/
#ifndef ZEPHYR_INCLUDE_SYS_CLOCK_H_
#define ZEPHYR_INCLUDE_SYS_CLOCK_H_
#include <sys/util.h>
#include <sys/dlist.h>
#include <toolchain.h>
#include <zephyr/types.h>
#include <sys/time_units.h>
#ifdef __cplusplus
extern "C" {
#endif
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
/**
* @addtogroup clock_apis
* @{
*/
/**
* @brief Tick precision used in timeout APIs
*
* This type defines the word size of the timeout values used in
* k_timeout_t objects, and thus defines an upper bound on maximum
* timeout length (or equivalently minimum tick duration). Note that
* this does not affect the size of the system uptime counter, which
* is always a 64 bit count of ticks.
*/
#ifdef CONFIG_TIMEOUT_64BIT
typedef int64_t k_ticks_t;
#else
typedef uint32_t k_ticks_t;
#endif
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
#define K_TICKS_FOREVER ((k_ticks_t) -1)
#ifndef CONFIG_LEGACY_TIMEOUT_API
/**
* @brief Kernel timeout type
*
* Timeout arguments presented to kernel APIs are stored in this
* opaque type, which is capable of representing times in various
* formats and units. It should be constructed from application data
* using one of the macros defined for this purpose (e.g. `K_MSEC()`,
* `K_TIMEOUT_ABS_TICKS()`, etc...), or be one of the two constants
* K_NO_WAIT or K_FOREVER. Applications should not inspect the
* internal data once constructed. Timeout values may be compared for
* equality with the `K_TIMEOUT_EQ()` macro.
*/
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
typedef struct {
k_ticks_t ticks;
} k_timeout_t;
/**
* @brief Compare timeouts for equality
*
* The k_timeout_t object is an opaque struct that should not be
* inspected by application code. This macro exists so that users can
* test timeout objects for equality with known constants
* (e.g. K_NO_WAIT and K_FOREVER) when implementing their own APIs in
* terms of Zephyr timeout constants.
*
* @return True if the timeout objects are identical
*/
#define K_TIMEOUT_EQ(a, b) ((a).ticks == (b).ticks)
#define Z_TIMEOUT_NO_WAIT ((k_timeout_t) {})
#define Z_TIMEOUT_TICKS(t) ((k_timeout_t) { .ticks = (t) })
#define Z_FOREVER Z_TIMEOUT_TICKS(K_TICKS_FOREVER)
#ifdef CONFIG_TIMEOUT_64BIT
# define Z_TIMEOUT_MS(t) Z_TIMEOUT_TICKS((k_ticks_t)k_ms_to_ticks_ceil64(MAX(t, 0)))
# define Z_TIMEOUT_US(t) Z_TIMEOUT_TICKS((k_ticks_t)k_us_to_ticks_ceil64(MAX(t, 0)))
# define Z_TIMEOUT_NS(t) Z_TIMEOUT_TICKS((k_ticks_t)k_ns_to_ticks_ceil64(MAX(t, 0)))
# define Z_TIMEOUT_CYC(t) Z_TIMEOUT_TICKS((k_ticks_t)k_cyc_to_ticks_ceil64(MAX(t, 0)))
#else
# define Z_TIMEOUT_MS(t) Z_TIMEOUT_TICKS((k_ticks_t)k_ms_to_ticks_ceil32(MAX(t, 0)))
# define Z_TIMEOUT_US(t) Z_TIMEOUT_TICKS((k_ticks_t)k_us_to_ticks_ceil32(MAX(t, 0)))
# define Z_TIMEOUT_NS(t) Z_TIMEOUT_TICKS((k_ticks_t)k_ns_to_ticks_ceil32(MAX(t, 0)))
# define Z_TIMEOUT_CYC(t) Z_TIMEOUT_TICKS((k_ticks_t)k_cyc_to_ticks_ceil32(MAX(t, 0)))
#endif
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
/* Converts between absolute timeout expiration values (packed into
* the negative space below K_TICKS_FOREVER) and (non-negative) delta
* timeout values. If the result of Z_TICK_ABS(t) is >= 0, then the
* value was an absolute timeout with the returend expiration time.
* Note that this macro is bidirectional: Z_TICK_ABS(Z_TICK_ABS(t)) ==
* t for all inputs, and that the representation of K_TICKS_FOREVER is
* the same value in both spaces! Clever, huh?
*/
#define Z_TICK_ABS(t) (K_TICKS_FOREVER - 1 - (t))
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
#else
/* Legacy timeout API */
typedef int32_t k_timeout_t;
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
#define K_TIMEOUT_EQ(a, b) ((a) == (b))
#define Z_TIMEOUT_NO_WAIT 0
#define Z_TIMEOUT_TICKS(t) k_ticks_to_ms_ceil32(t)
#define Z_FOREVER K_TICKS_FOREVER
#define Z_TIMEOUT_MS(t) (t)
#define Z_TIMEOUT_US(t) ((999 + (t)) / 1000)
#define Z_TIMEOUT_NS(t) ((999999 + (t)) / 1000000)
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
#define Z_TIMEOUT_CYC(t) k_cyc_to_ms_ceil32(MAX((t), 0))
#endif
/** @} */
kernel: tickless: Add tickless kernel support Adds event based scheduling logic to the kernel. Updates management of timeouts, timers, idling etc. based on time tracked at events rather than periodic ticks. Provides interfaces for timers to announce and get next timer expiry based on kernel scheduling decisions involving time slicing of threads, timeouts and idling. Uses wall time units instead of ticks in all scheduling activities. The implementation involves changes in the following areas 1. Management of time in wall units like ms/us instead of ticks The existing implementation already had an option to configure number of ticks in a second. The new implementation builds on top of that feature and provides option to set the size of the scheduling granurality to mili seconds or micro seconds. This allows most of the current implementation to be reused. Due to this re-use and co-existence with tick based kernel, the names of variables may contain the word "tick". However, in the tickless kernel implementation, it represents the currently configured time unit, which would be be mili seconds or micro seconds. The APIs that take time as a parameter are not impacted and they continue to pass time in mili seconds. 2. Timers would not be programmed in periodic mode generating ticks. Instead they would be programmed in one shot mode to generate events at the time the kernel scheduler needs to gain control for its scheduling activities like timers, timeouts, time slicing, idling etc. 3. The scheduler provides interfaces that the timer drivers use to announce elapsed time and get the next time the scheduler needs a timer event. It is possible that the scheduler may not need another timer event, in which case the system would wait for a non-timer event to wake it up if it is idling. 4. New APIs are defined to be implemented by timer drivers. Also they need to handler timer events differently. These changes have been done in the HPET timer driver. In future other timers that support tickles kernel should implement these APIs as well. These APIs are to re-program the timer, update and announce elapsed time. 5. Philosopher and timer_api applications have been enabled to test tickless kernel. Separate configuration files are created which define the necessary CONFIG flags. Run these apps using following command make pristine && make BOARD=qemu_x86 CONF_FILE=prj_tickless.conf qemu Jira: ZEP-339 ZEP-1946 ZEP-948 Change-Id: I7d950c31bf1ff929a9066fad42c2f0559a2e5983 Signed-off-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-02-06 04:37:19 +01:00
#ifdef CONFIG_TICKLESS_KERNEL
extern int _sys_clock_always_on;
extern void z_enable_sys_clock(void);
kernel: tickless: Add tickless kernel support Adds event based scheduling logic to the kernel. Updates management of timeouts, timers, idling etc. based on time tracked at events rather than periodic ticks. Provides interfaces for timers to announce and get next timer expiry based on kernel scheduling decisions involving time slicing of threads, timeouts and idling. Uses wall time units instead of ticks in all scheduling activities. The implementation involves changes in the following areas 1. Management of time in wall units like ms/us instead of ticks The existing implementation already had an option to configure number of ticks in a second. The new implementation builds on top of that feature and provides option to set the size of the scheduling granurality to mili seconds or micro seconds. This allows most of the current implementation to be reused. Due to this re-use and co-existence with tick based kernel, the names of variables may contain the word "tick". However, in the tickless kernel implementation, it represents the currently configured time unit, which would be be mili seconds or micro seconds. The APIs that take time as a parameter are not impacted and they continue to pass time in mili seconds. 2. Timers would not be programmed in periodic mode generating ticks. Instead they would be programmed in one shot mode to generate events at the time the kernel scheduler needs to gain control for its scheduling activities like timers, timeouts, time slicing, idling etc. 3. The scheduler provides interfaces that the timer drivers use to announce elapsed time and get the next time the scheduler needs a timer event. It is possible that the scheduler may not need another timer event, in which case the system would wait for a non-timer event to wake it up if it is idling. 4. New APIs are defined to be implemented by timer drivers. Also they need to handler timer events differently. These changes have been done in the HPET timer driver. In future other timers that support tickles kernel should implement these APIs as well. These APIs are to re-program the timer, update and announce elapsed time. 5. Philosopher and timer_api applications have been enabled to test tickless kernel. Separate configuration files are created which define the necessary CONFIG flags. Run these apps using following command make pristine && make BOARD=qemu_x86 CONF_FILE=prj_tickless.conf qemu Jira: ZEP-339 ZEP-1946 ZEP-948 Change-Id: I7d950c31bf1ff929a9066fad42c2f0559a2e5983 Signed-off-by: Ramesh Thomas <ramesh.thomas@intel.com>
2017-02-06 04:37:19 +01:00
#endif
#if defined(CONFIG_SYS_CLOCK_EXISTS) && \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 0)
#error "SYS_CLOCK_HW_CYCLES_PER_SEC must be non-zero!"
#endif
/* number of nsec per usec */
#define NSEC_PER_USEC 1000U
/* number of microseconds per millisecond */
#define USEC_PER_MSEC 1000U
/* number of milliseconds per second */
#define MSEC_PER_SEC 1000U
/* number of microseconds per second */
#define USEC_PER_SEC ((USEC_PER_MSEC) * (MSEC_PER_SEC))
/* number of nanoseconds per second */
#define NSEC_PER_SEC ((NSEC_PER_USEC) * (USEC_PER_MSEC) * (MSEC_PER_SEC))
/* kernel clocks */
/*
* We default to using 64-bit intermediates in timescale conversions,
* but if the HW timer cycles/sec, ticks/sec and ms/sec are all known
* to be nicely related, then we can cheat with 32 bits instead.
*/
#ifdef CONFIG_SYS_CLOCK_EXISTS
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) || \
(MSEC_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC) || \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define _NEED_PRECISE_TICK_MS_CONVERSION
#endif
#endif
#define __ticks_to_ms(t) __DEPRECATED_MACRO \
k_ticks_to_ms_floor64((uint64_t)(t))
#define z_ms_to_ticks(t) \
((int32_t)k_ms_to_ticks_ceil32((uint32_t)(t)))
#define __ticks_to_us(t) __DEPRECATED_MACRO \
((int32_t)k_ticks_to_us_floor32((uint32_t)(t)))
#define z_us_to_ticks(t) __DEPRECATED_MACRO \
((int32_t)k_us_to_ticks_ceil32((uint32_t)(t)))
#define sys_clock_hw_cycles_per_tick() __DEPRECATED_MACRO \
((int)k_ticks_to_cyc_floor32(1U))
#define SYS_CLOCK_HW_CYCLES_TO_NS64(t) __DEPRECATED_MACRO \
k_cyc_to_ns_floor64((uint64_t)(t))
#define SYS_CLOCK_HW_CYCLES_TO_NS(t) __DEPRECATED_MACRO \
((uint32_t)k_cyc_to_ns_floor64(t))
/* added tick needed to account for tick in progress */
#define _TICK_ALIGN 1
/*
* SYS_CLOCK_HW_CYCLES_TO_NS_AVG converts CPU clock cycles to nanoseconds
* and calculates the average cycle time
*/
#define SYS_CLOCK_HW_CYCLES_TO_NS_AVG(X, NCYCLES) \
(uint32_t)(k_cyc_to_ns_floor64(X) / NCYCLES)
/**
* @defgroup clock_apis Kernel Clock APIs
* @ingroup kernel_apis
* @{
*/
/**
* @} end defgroup clock_apis
*/
/**
*
* @brief Return the lower part of the current system tick count
*
* @return the current system tick count
*
*/
uint32_t z_tick_get_32(void);
/**
*
* @brief Return the current system tick count
*
* @return the current system tick count
*
*/
int64_t z_tick_get(void);
#ifndef CONFIG_SYS_CLOCK_EXISTS
#define z_tick_get() (0)
#define z_tick_get_32() (0)
#endif
uint64_t z_timeout_end_calc(k_timeout_t timeout);
kernel/timeout: Make timeout arguments an opaque type Add a k_timeout_t type, and use it everywhere that kernel API functions were accepting a millisecond timeout argument. Instead of forcing milliseconds everywhere (which are often not integrally representable as system ticks), do the conversion to ticks at the point where the timeout is created. This avoids an extra unit conversion in some application code, and allows us to express the timeout in units other than milliseconds to achieve greater precision. The existing K_MSEC() et. al. macros now return initializers for a k_timeout_t. The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t values, which means they cannot be operated on as integers. Applications which have their own APIs that need to inspect these vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to test for equality. Timer drivers, which receive an integer tick count in ther z_clock_set_timeout() functions, now use the integer-valued K_TICKS_FOREVER constant instead of K_FOREVER. For the initial release, to preserve source compatibility, a CONFIG_LEGACY_TIMEOUT_API kconfig is provided. When true, the k_timeout_t will remain a compatible 32 bit value that will work with any legacy Zephyr application. Some subsystems present timeout (or timeout-like) values to their own users as APIs that would re-use the kernel's own constants and conventions. These will require some minor design work to adapt to the new scheme (in most cases just using k_timeout_t directly in their own API), and they have not been changed in this patch, instead selecting CONFIG_LEGACY_TIMEOUT_API via kconfig. These subsystems include: CAN Bus, the Microbit display driver, I2S, LoRa modem drivers, the UART Async API, Video hardware drivers, the console subsystem, and the network buffer abstraction. k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant provided that works identically to the original API. Most of the changes here are just type/configuration management and documentation, but there are logic changes in mempool, where a loop that used a timeout numerically has been reworked using a new z_timeout_end_calc() predicate. Also in queue.c, a (when POLL was enabled) a similar loop was needlessly used to try to retry the k_poll() call after a spurious failure. But k_poll() does not fail spuriously, so the loop was removed. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-06 00:18:14 +01:00
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_INCLUDE_SYS_CLOCK_H_ */