libmaple/libmaple/timer_private.h
Marti Bolivar 29518f6e34 Tweak some timer_private APIs.
The current versions of DELARE_*_TIMER() don't play well with cscope,
which is a bad sign. Fix that.

Signed-off-by: Marti Bolivar <mbolivar@leaflabs.com>
2012-06-07 19:15:04 -04:00

236 lines
9.7 KiB
C

/******************************************************************************
* The MIT License
*
* Copyright (c) 2011, 2012 LeafLabs, LLC.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*****************************************************************************/
/**
* @file libmaple/timer_private.h
* @author Marti Bolivar <mbolivar@leaflabs.com>
* @brief Private, internal timer APIs.
*/
#ifndef _LIBMAPLE_TIMER_PRIVATE_H_
#define _LIBMAPLE_TIMER_PRIVATE_H_
/*
* Helper macros for declaring timer_devs of various timer_types
*/
/* The indexes of user handlers in a timer_dev.handlers are just like
* the corresponding DIER bits, as follows: */
/* Advanced timers:
* [0] = Update handler;
* [1,2,3,4] = capture/compare 1,2,3,4 handlers, respectively;
* [5] = COM;
* [6] = TRG;
* [7] = BRK. */
#define NR_ADV_HANDLERS 8
/* General purpose timers:
* [0] = update;
* [1,2,3,4] = capture/compare 1,2,3,4;
* [5] = <junk>;
* [6] = trigger. */
#define NR_GEN_HANDLERS 7
/* Basic timers:
* [0] = update. */
#define NR_BAS_HANDLERS 1
/* For declaring advanced timers. */
#define ADVANCED_TIMER(num) \
{ \
.regs = { .adv = TIMER##num##_BASE }, \
.clk_id = RCC_TIMER##num, \
.type = TIMER_ADVANCED, \
.handlers = { [NR_ADV_HANDLERS - 1] = 0 }, \
}
/* For declaring full-featured general purpose timers. */
#define GENERAL_TIMER(num) \
{ \
.regs = { .gen = TIMER##num##_BASE }, \
.clk_id = RCC_TIMER##num, \
.type = TIMER_GENERAL, \
.handlers = { [NR_GEN_HANDLERS - 1] = 0 }, \
}
/* For declaring general purpose timers with limited interrupt
* capability (e.g. timers 9 through 14 on STM32F2 and XL-density
* STM32F1). */
#define RESTRICTED_GENERAL_TIMER(num, max_dier_bit) \
{ \
.regs = { .gen = TIMER##num##_BASE }, \
.clk_id = RCC_TIMER##num, \
.type = TIMER_GENERAL, \
.handlers = { [max_dier_bit] = 0 }, \
}
/* For declaring basic timers (e.g. TIM6 and TIM7). */
#define BASIC_TIMER(num) \
{ \
.regs = { .bas = TIMER##num##_BASE }, \
.clk_id = RCC_TIMER##num, \
.type = TIMER_BASIC, \
.handlers = { [NR_BAS_HANDLERS - 1] = 0 }, \
}
/*
* IRQ handlers
*
* These decode TIMx_DIER and TIMx_SR, then dispatch to the user-level
* IRQ handlers. They also clean up TIMx_SR afterwards, so the user
* doesn't have to deal with register details.
*
* Notes:
*
* - These dispatch routines make use of the fact that DIER interrupt
* enable bits and SR interrupt flags have common bit positions.
* Thus, ANDing DIER and SR lets us check if an interrupt is enabled
* and if it has occurred simultaneously.
*
* - We force these routines to inline to avoid call overhead, but
* there aren't any measurements to prove that this is actually a
* good idea. Profile-directed optimizations are definitely wanted. */
/* A special-case dispatch routine for timers which only serve a
* single interrupt on a given IRQ line.
*
* This function still checks DIER & SR, as in some cases, a timer may
* only serve a single interrupt on a particular NVIC line, but that
* line may be shared with another timer. For example, the timer 1
* update interrupt shares an IRQ line with the timer 10 interrupt on
* STM32F1 (XL-density), STM32F2, and STM32F4. */
static __always_inline void dispatch_single_irq(timer_dev *dev,
timer_interrupt_id iid,
uint32 irq_mask) {
timer_bas_reg_map *regs = (dev->regs).bas;
if (regs->DIER & regs->SR & irq_mask) {
void (*handler)(void) = dev->handlers[iid];
if (handler) {
handler();
regs->SR &= ~irq_mask;
}
}
}
/* Helper macro for dispatch routines which service multiple interrupts. */
#define handle_irq(dier_sr, irq_mask, handlers, iid, handled_irq) do { \
if ((dier_sr) & (irq_mask)) { \
void (*__handler)(void) = (handlers)[iid]; \
if (__handler) { \
__handler(); \
handled_irq |= (irq_mask); \
} \
} \
} while (0)
static __always_inline void dispatch_adv_brk(timer_dev *dev) {
dispatch_single_irq(dev, TIMER_BREAK_INTERRUPT, TIMER_SR_BIF);
}
static __always_inline void dispatch_adv_up(timer_dev *dev) {
dispatch_single_irq(dev, TIMER_UPDATE_INTERRUPT, TIMER_SR_UIF);
}
static __always_inline void dispatch_adv_trg_com(timer_dev *dev) {
timer_adv_reg_map *regs = (dev->regs).adv;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0; /* Logical OR of SR interrupt flags we end up
* handling. We clear these. User handlers
* must clear overcapture flags, to avoid
* wasting time in output mode. */
handle_irq(dsr, TIMER_SR_TIF, hs, TIMER_TRG_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_COMIF, hs, TIMER_COM_INTERRUPT, handled);
regs->SR &= ~handled;
}
static __always_inline void dispatch_adv_cc(timer_dev *dev) {
timer_adv_reg_map *regs = (dev->regs).adv;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0;
handle_irq(dsr, TIMER_SR_CC4IF, hs, TIMER_CC4_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC3IF, hs, TIMER_CC3_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC2IF, hs, TIMER_CC2_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC1IF, hs, TIMER_CC1_INTERRUPT, handled);
regs->SR &= ~handled;
}
static __always_inline void dispatch_general(timer_dev *dev) {
timer_gen_reg_map *regs = (dev->regs).gen;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0;
handle_irq(dsr, TIMER_SR_TIF, hs, TIMER_TRG_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC4IF, hs, TIMER_CC4_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC3IF, hs, TIMER_CC3_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC2IF, hs, TIMER_CC2_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC1IF, hs, TIMER_CC1_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_UIF, hs, TIMER_UPDATE_INTERRUPT, handled);
regs->SR &= ~handled;
}
/* On F1 (XL-density), F2, and F4, TIM9 and TIM12 are restricted
* general-purpose timers with update, CC1, CC2, and TRG interrupts. */
static __always_inline void dispatch_tim_9_12(timer_dev *dev) {
timer_gen_reg_map *regs = (dev->regs).gen;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0;
handle_irq(dsr, TIMER_SR_TIF, hs, TIMER_TRG_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC2IF, hs, TIMER_CC2_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_CC1IF, hs, TIMER_CC1_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_UIF, hs, TIMER_UPDATE_INTERRUPT, handled);
regs->SR &= ~handled;
}
/* On F1 (XL-density), F2, and F4, timers 10, 11, 13, and 14 are
* restricted general-purpose timers with update and CC1 interrupts. */
static __always_inline void dispatch_tim_10_11_13_14(timer_dev *dev) {
timer_gen_reg_map *regs = (dev->regs).gen;
uint32 dsr = regs->DIER & regs->SR;
void (**hs)(void) = dev->handlers;
uint32 handled = 0;
handle_irq(dsr, TIMER_SR_CC1IF, hs, TIMER_CC1_INTERRUPT, handled);
handle_irq(dsr, TIMER_SR_UIF, hs, TIMER_UPDATE_INTERRUPT, handled);
regs->SR &= ~handled;
}
static __always_inline void dispatch_basic(timer_dev *dev) {
dispatch_single_irq(dev, TIMER_UPDATE_INTERRUPT, TIMER_SR_UIF);
}
#endif