libmaple/examples/test-timers.cpp
Marti Bolivar 97b01c0b98 Globally switch style for GPIO config routines.
Stupidly, spi_gpio_cfg() didn't take a spi_dev* argument on F1,
because it doesn't matter there. On F2, where we need to set an
alternate function when configuring GPIOs for SPI, we need to know the
dev.

We can't add break backwards compatibility, so we need a new
function. However, we've since added a bunch of foo_gpio_cfg()
routines, and we don't want confusing asymmetry in the names. So a
global style change is needed. (Fortunately, the new functions weren't
part of a release, so it's no problem to change their names).

Change all foo_gpio_cfg() routines to foo_config_gpios() (or
foo_config_gpio(), if there's only one GPIO to configure). For
backwards compatibility, make spi_gpio_cfg() on F1 an __always_inline
call to spi_config_gpios().

Signed-off-by: Marti Bolivar <mbolivar@leaflabs.com>
2012-06-03 02:15:22 -04:00

538 lines
14 KiB
C++

//
// This is a mostly Wirish-free timer test. Wirish usage is minimized
// because this is a test of the C timer interface in
// <libmaple/timer.h>, so it's good if it can be made to work even
// when most or all of Wirish is missing. Because of that, you may
// need to customize the following output configuration:
//
// Output is printed:
// - on COMM_USART,
// - via TX pin on port COMM_USART_PORT, bit COMM_USART_TX_BIT
// - via RX pin on port COMM_USART_PORT, bit COMM_USART_RX_BIT
// - at COMM_USART_BAUD baud.
#define COMM_USART USART6
#define COMM_USART_BAUD 115200
#define COMM_USART_PORT GPIOG
#define COMM_USART_TX_BIT 14
#define COMM_USART_RX_BIT 9
// Other optional configuration below.
#include <libmaple/libmaple.h>
#include <libmaple/gpio.h>
#include <libmaple/usart.h>
#include <libmaple/systick.h>
#include <libmaple/timer.h>
#include <wirish/boards.h>
//
// Configuration
//
// More output if true
static bool verbose = true;
// Timers to test
// FIXME use feature test macros for smaller MCUs
static timer_dev *timers[] = {
// Available on all currently supported MCUs
TIMER1, TIMER2, TIMER3, TIMER4,
// Available on F1 (HD and up), F2
TIMER5, TIMER6, TIMER7, TIMER8,
// Available on F1 (XL), F2
TIMER9, TIMER10, TIMER11, TIMER12, TIMER13, TIMER14,
};
//
// Test routines
//
typedef void (*timer_test_t)(timer_dev *);
static void runTest(const char description[], timer_test_t test);
static void runTests(void);
static void testGetAndSetCount(timer_dev*);
static void testPauseAndResume(timer_dev*);
static void testTimerChannels(timer_dev*);
//
// Helpers
//
static void initTimer(timer_dev *dev);
static int timerNumber(timer_dev *dev);
// Hack: a systick-based delay, useful until delay_us() is fixed
static void _delay(uint32 msec);
// Wirish-less USART initialization routine
static void init_usart(usart_dev *dev, gpio_dev *gdev, uint8 tx, uint8 rx);
// Return whether or not the timer has capture/compare channel `ch'.
// TODO: does something like this belong in the standard timer library?
static bool timer_has_cc_ch(timer_dev *dev, int ch);
// Printing routines and variants for verbose mode
static void putstr(const char str[]);
static void println(void);
static void putstrln(const char str[]);
static void putudec(uint32 val);
static void puttimn(timer_dev *dev);
static void v_putstr(const char str[]);
static void v_println();
static void v_putstrln(const char str[]);
static void v_putudec(uint32 val);
static void v_puttimn(timer_dev *dev);
// Used to visually separate output from different tests
static void printBanner(void);
//
// Handler state
//
static int count1 = 0;
static int count2 = 0;
static int count3 = 0;
static int count4 = 0;
static int timer_num; // Current timer we're considering
//
// Timer capture/compare interrupt handlers
//
// These are shared between timers. The global variable timer_num
// controls which timer they affect.
//
static void handler1(void);
static void handler2(void);
static void handler3(void);
static void handler4(void);
static voidFuncPtr handlers[] = {handler1, handler2, handler3, handler4};
//
// setup() and loop()
//
void setup() {
init_usart(COMM_USART, COMM_USART_PORT,
COMM_USART_TX_BIT, COMM_USART_RX_BIT);
_delay(5);
println();
printBanner();
putstr("Initializing timers...\r\n");
timer_foreach(initTimer);
putstr("Done. Running tests.\r\n");
runTests();
printBanner();
putstr("Done testing timers.\r\n");
}
void loop() {
}
//
// Test routine implementations
//
static void runTests(void) {
runTest("timer_get_count()/timer_set_count()", testGetAndSetCount);
runTest("timer_pause()/timer_resume()", testPauseAndResume);
runTest("capture/compare channels and interrupts",
testTimerChannels);
}
static void runTest(const char description[], timer_test_t test) {
printBanner();
putstr("Testing ");
putstr(description);
putstrln(".");
timer_foreach(test);
}
static void testGetAndSetCount(timer_dev *dev) {
unsigned before, after;
unsigned val_to_set = 1234;
timer_pause(dev);
before = timer_get_count(dev);
timer_set_count(dev, val_to_set);
after = timer_get_count(dev);
timer_resume(dev);
if (after != val_to_set) {
puttimn(dev);
putstr(": ");
putstr("*** FAIL: get/set count for ");
puttimn(dev);
putstr(".");
putstr("Start count = ");
putudec(before);
putstr(". Count set to ");
putudec(val_to_set);
putstr(", and now count is = ");
putudec(after);
println();
} else if (verbose) {
puttimn(dev);
putstr(": ");
putstrln("[ok]");
}
}
// This hack works on all currently supported STM32 series, but you
// may need to do something smarter in the future. The assertions
// ensure that our assumptions hold for your target.
static timer_dev *getDifferentTimerOnSameBusAs(timer_dev *dev) {
rcc_clk_domain dev_domain = rcc_dev_clk(dev->clk_id);
ASSERT(RCC_APB1 == dev_domain || RCC_APB2 == dev_domain);
ASSERT(rcc_dev_clk(TIMER1->clk_id) == RCC_APB2);
ASSERT(rcc_dev_clk(TIMER2->clk_id) == RCC_APB1);
ASSERT(rcc_dev_clk(TIMER8->clk_id) == RCC_APB2);
ASSERT(rcc_dev_clk(TIMER3->clk_id) == RCC_APB1);
if (dev->clk_id == RCC_TIMER1) {
return TIMER8;
}
if (dev->clk_id == RCC_TIMER2) {
return TIMER3;
}
return dev_domain == RCC_APB2 ? TIMER1 : TIMER2;
}
// Rough test of pause and resume.
//
// Approximately half the time, dev is in the "pause" state and the
// timer doesn't increment, while another timer (`base_dev') on the
// same bus continues. dev and base_dev have identical start counts
// and prescalers.
//
// Since dev and base_dev share a bus (and thus a base clock), and we
// configure them to have the same prescaler and start count, the
// ratio of their end counts should be approximately 1 : 2. We check
// to make sure this is true, up to tolerance `epsilon'.
static void testPauseAndResume(timer_dev *dev) {
timer_dev *base_dev = getDifferentTimerOnSameBusAs(dev);
unsigned start_count = 0, reload = 65535;
// This prescaler should be enough to ensure that we don't
// overflow, while still giving us a reasonably large number of
// timer ticks.
uint16 prescaler = CYCLES_PER_MICROSECOND * 50;
double epsilon = .02;
if (rcc_dev_clk(base_dev->clk_id) != rcc_dev_clk(dev->clk_id)) {
putstrln("*** ERROR: cannot run test. Bus info is messed up.");
return;
}
// Pause and set up timers
timer_pause(base_dev);
timer_pause(dev);
timer_set_count(base_dev, start_count);
timer_set_count(dev, start_count);
timer_set_reload(base_dev, reload);
timer_set_reload(dev, reload);
timer_set_prescaler(base_dev, prescaler);
timer_set_prescaler(dev, prescaler);
timer_generate_update(base_dev);
timer_generate_update(dev);
// Resume the timers and run the test
ASSERT(timer_get_count(base_dev) == start_count);
ASSERT(timer_get_count(dev) == start_count);
timer_resume(base_dev);
timer_resume(dev);
_delay(1000);
timer_pause(dev);
_delay(1000);
timer_pause(base_dev);
// Check the results
unsigned dev_count = timer_get_count(dev);
unsigned base_count = timer_get_count(base_dev);
double count_ratio = ((double)dev_count / base_count);
bool fail = false;
if (count_ratio > 0.5 + epsilon || count_ratio < 0.5 - epsilon) {
fail = true;
}
if (fail || verbose) {
puttimn(dev);
putstr(" vs. ");
puttimn(base_dev);
putstr(": ");
if (fail) putstr("*** FAIL: ");
else putstr("[ok] ");
putstr("(dev = ");
putudec(dev_count);
putstr(") / (base = ");
putudec(base_count);
putstr(") = ");
// hack hack hack
putudec((int)count_ratio);
count_ratio -= (int)count_ratio;
putstr(".");
int cr_x_100 = (int)(count_ratio * 100);
int hundredths = cr_x_100 % 10;
cr_x_100 /= 10;
int tenths = cr_x_100 % 10;
putudec(tenths);
putudec(hundredths);
println();
}
}
// This function touches every capture/compare channel of a given
// timer. The channel counts should be equal within a timer
// regardless of other interrupts on the system (note that this
// doesn't really test timers with only a single capture/compare
// channel; for that, you'll want to do visual inspection of timers
// that share a bus, in verbose mode).
static void testTimerChannels(timer_dev *dev) {
switch (dev->type) {
case TIMER_BASIC:
v_putstr("Skipping basic timer ");
v_puttimn(dev);
v_println();
return;
case TIMER_ADVANCED:
case TIMER_GENERAL:
// Set up
v_puttimn(dev);
v_println();
v_putstr("\tchannels: ");
timer_num = timerNumber(dev);
timer_pause(dev);
count1 = 0;
count2 = 0;
count3 = 0;
count4 = 0;
timer_set_reload(dev, 0xFFFF);
timer_set_prescaler(dev, 1);
for (int c = 1; c <= 4; c++) {
if (timer_has_cc_ch(dev, c)) {
v_putudec(c);
v_putstr("\t");
timer_set_compare(dev, c, 0xFFFF);
timer_set_mode(dev, c, TIMER_OUTPUT_COMPARE);
timer_attach_interrupt(dev, c, handlers[c - 1]);
}
}
v_println();
// Run test
timer_generate_update(dev);
timer_resume(dev);
_delay(250);
timer_pause(dev);
// Print results
v_putstr("\tcounts: ");
bool fail = false;
bool mismatched[4] = {false, false, false, false};
int counts[4];
counts[0] = count1;
counts[1] = count2;
counts[2] = count3;
counts[3] = count4;
bool first = true;
int first_count = -1;
for (int c = 1; c <= 4; c++) {
if (timer_has_cc_ch(dev, c)) {
if (first) {
first_count = counts[c - 1];
first = false;
}
if (!first && (counts[c - 1] != first_count)) {
mismatched[c - 1] = true;
fail = true;
}
v_putudec(counts[c - 1]);
v_putstr("\t");
}
}
v_println();
if (fail) {
for (int i = 0; i < 4; i++) {
if (mismatched[i]) {
putstr("*** FAIL: mismatch on ");
puttimn(dev);
putstr(", channel ");
putudec(i + 1);
putstr(": expected ");
putudec(first_count);
putstr(", got ");
putudec(counts[i]);
println();
}
}
} else {
puttimn(dev);
putstrln(" [ok]");
}
v_println();
// Clean up
for (int c = 1; c <= 4; c++) {
if (timer_has_cc_ch(dev, c)) {
timer_set_mode(dev, c, TIMER_DISABLED);
}
}
break;
}
}
//
// Helper implementations
//
static void _delay(uint32 msec) {
uint32 end = systick_uptime() + msec;
while (systick_uptime() < end)
;
}
static void init_usart(usart_dev *dev, gpio_dev *gdev, uint8 tx, uint8 rx) {
usart_config_gpios_async(dev, gdev, rx, gdev, tx, 0);
usart_init(dev);
usart_set_baud_rate(dev, USART_USE_PCLK, COMM_USART_BAUD);
usart_enable(dev);
}
static bool timer_has_cc_ch(timer_dev *dev, int ch) {
ASSERT(1 <= ch && ch <= 4);
if (dev->type == TIMER_BASIC)
return false;
int tn = timerNumber(dev);
return (// TIM1-5 and 8 have all four channels
(tn <= 5 || tn == 8) ||
// TIM9 and 12 only have channels 1 and 2
((tn == 9 || tn == 12) && ch <= 2) ||
// All other general purpose timers only have channel 1
(ch == 1));
}
static void putstr(const char str[]) {
usart_putstr(COMM_USART, str);
}
static void println(void) {
putstr("\r\n");
}
static void putstrln(const char str[]) {
putstr(str);
println();
}
static void putudec(uint32 val) {
usart_putudec(COMM_USART, val);
}
static void puttimn(timer_dev *dev) {
putstr("TIM");
putudec(timerNumber(dev));
}
static void v_putstr(const char str[]) {
if (verbose) putstr(str);
}
static void v_println() {
if (verbose) println();
}
__attribute__((unused)) /* (shut up, gcc) */
static void v_putstrln(const char str[]) {
if (verbose) putstrln(str);
}
static void v_putudec(uint32 val) {
if (verbose) putudec(val);
}
static void v_puttimn(timer_dev *dev) {
if (verbose) puttimn(dev);
}
// Used to visually separate output from different tests
static void printBanner(void) {
putstrln("-----------------------------------------------------");
}
static void initTimer(timer_dev *dev) {
v_puttimn(dev);
timer_init(dev);
switch (dev->type) {
case TIMER_ADVANCED:
case TIMER_GENERAL:
v_putstr(" channels ");
for (int c = 1; c <= 4; c++) {
if (timer_has_cc_ch(dev, c)) {
v_putudec(c);
v_putstr(" ");
timer_set_mode(dev, c, TIMER_OUTPUT_COMPARE);
}
}
break;
case TIMER_BASIC:
break;
}
v_println();
}
static int timerNumber(timer_dev *dev) {
switch (dev->clk_id) {
case RCC_TIMER1: return 1;
case RCC_TIMER2: return 2;
case RCC_TIMER3: return 3;
case RCC_TIMER4: return 4;
case RCC_TIMER5: return 5;
case RCC_TIMER6: return 6;
case RCC_TIMER7: return 7;
case RCC_TIMER8: return 8;
case RCC_TIMER9: return 9;
case RCC_TIMER10: return 10;
case RCC_TIMER11: return 11;
case RCC_TIMER12: return 12;
case RCC_TIMER13: return 13;
case RCC_TIMER14: return 14;
default:
ASSERT(0);
return 0;
}
}
//
// IRQ Handlers
//
static void handler1(void) {
count1++;
}
static void handler2(void) {
count2++;
}
static void handler3(void) {
count3++;
}
static void handler4(void) {
count4++;
}
//
// init() and main()
//
__attribute__((constructor)) void premain() {
init();
}
int main(void) {
setup();
while (true) {
loop();
}
return 0;
}