gbdk-releases/sdcc/src/SDCCast.c
2015-01-10 16:25:09 +01:00

4922 lines
136 KiB
C

/*-------------------------------------------------------------------------
SDCCast.c - source file for parser support & all ast related routines
Written By - Sandeep Dutta . sandeep.dutta@usa.net (1998)
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
In other words, you are welcome to use, share and improve this program.
You are forbidden to forbid anyone else to use, share and improve
what you give them. Help stamp out software-hoarding!
-------------------------------------------------------------------------*/
#include "common.h"
int currLineno = 0;
set *astList = NULL;
set *operKeyReset = NULL;
ast *staticAutos = NULL;
int labelKey = 1;
#define LRVAL(x) x->left->rvalue
#define RRVAL(x) x->right->rvalue
#define TRVAL(x) x->rvalue
#define LLVAL(x) x->left->lvalue
#define RLVAL(x) x->right->lvalue
#define TLVAL(x) x->lvalue
#define RTYPE(x) x->right->ftype
#define RETYPE(x) x->right->etype
#define LTYPE(x) x->left->ftype
#define LETYPE(x) x->left->etype
#define TTYPE(x) x->ftype
#define TETYPE(x) x->etype
#define ALLOCATE 1
#define DEALLOCATE 2
int noLineno = 0;
int noAlloc = 0;
symbol *currFunc;
ast *createIval (ast *, sym_link *, initList *, ast *);
ast *createIvalCharPtr (ast *, sym_link *, ast *);
ast *optimizeRRCRLC (ast *);
ast *optimizeGetHbit (ast *);
ast *backPatchLabels (ast *, symbol *, symbol *);
void PA(ast *t);
int inInitMode = 0;
memmap *GcurMemmap=NULL; /* points to the memmap that's currently active */
FILE *codeOutFile;
int
ptt (ast * tree)
{
printTypeChain (tree->ftype, stdout);
return 0;
}
/*-----------------------------------------------------------------*/
/* newAst - creates a fresh node for an expression tree */
/*-----------------------------------------------------------------*/
#if 0
ast *
newAst (int type, void *op)
{
ast *ex;
static int oldLineno = 0;
ex = Safe_alloc ( sizeof (ast));
ex->type = type;
ex->lineno = (noLineno ? oldLineno : yylineno);
ex->filename = currFname;
ex->level = NestLevel;
ex->block = currBlockno;
ex->initMode = inInitMode;
/* depending on the type */
switch (type)
{
case EX_VALUE:
ex->opval.val = (value *) op;
break;
case EX_OP:
ex->opval.op = (long) op;
break;
case EX_LINK:
ex->opval.lnk = (sym_link *) op;
break;
case EX_STMNT:
ex->opval.stmnt = (unsigned) op;
}
return ex;
}
#endif
static ast *
newAst_ (unsigned type)
{
ast *ex;
static int oldLineno = 0;
ex = Safe_alloc ( sizeof (ast));
ex->type = type;
ex->lineno = (noLineno ? oldLineno : yylineno);
ex->filename = currFname;
ex->level = NestLevel;
ex->block = currBlockno;
ex->initMode = inInitMode;
return ex;
}
ast *
newAst_VALUE (value * val)
{
ast *ex = newAst_ (EX_VALUE);
ex->opval.val = val;
return ex;
}
ast *
newAst_OP (unsigned op)
{
ast *ex = newAst_ (EX_OP);
ex->opval.op = op;
return ex;
}
ast *
newAst_LINK (sym_link * val)
{
ast *ex = newAst_ (EX_LINK);
ex->opval.lnk = val;
return ex;
}
ast *
newAst_STMNT (unsigned val)
{
ast *ex = newAst_ (EX_STMNT);
ex->opval.stmnt = val;
return ex;
}
/*-----------------------------------------------------------------*/
/* newNode - creates a new node */
/*-----------------------------------------------------------------*/
ast *
newNode (long op, ast * left, ast * right)
{
ast *ex;
ex = newAst_OP (op);
ex->left = left;
ex->right = right;
return ex;
}
/*-----------------------------------------------------------------*/
/* newIfxNode - creates a new Ifx Node */
/*-----------------------------------------------------------------*/
ast *
newIfxNode (ast * condAst, symbol * trueLabel, symbol * falseLabel)
{
ast *ifxNode;
/* if this is a literal then we already know the result */
if (condAst->etype && IS_LITERAL (condAst->etype))
{
/* then depending on the expression value */
if (floatFromVal (condAst->opval.val))
ifxNode = newNode (GOTO,
newAst_VALUE (symbolVal (trueLabel)),
NULL);
else
ifxNode = newNode (GOTO,
newAst_VALUE (symbolVal (falseLabel)),
NULL);
}
else
{
ifxNode = newNode (IFX, condAst, NULL);
ifxNode->trueLabel = trueLabel;
ifxNode->falseLabel = falseLabel;
}
return ifxNode;
}
/*-----------------------------------------------------------------*/
/* copyAstValues - copies value portion of ast if needed */
/*-----------------------------------------------------------------*/
void
copyAstValues (ast * dest, ast * src)
{
switch (src->opval.op)
{
case BLOCK:
dest->values.sym = copySymbolChain (src->values.sym);
break;
case SWITCH:
dest->values.switchVals.swVals =
copyValue (src->values.switchVals.swVals);
dest->values.switchVals.swDefault =
src->values.switchVals.swDefault;
dest->values.switchVals.swNum =
src->values.switchVals.swNum;
break;
case INLINEASM:
dest->values.inlineasm = Safe_alloc (strlen (src->values.inlineasm) + 1);
strcpy (dest->values.inlineasm, src->values.inlineasm);
break;
case ARRAYINIT:
dest->values.constlist = copyLiteralList(src->values.constlist);
break;
case FOR:
AST_FOR (dest, trueLabel) = copySymbol (AST_FOR (src, trueLabel));
AST_FOR (dest, continueLabel) = copySymbol (AST_FOR (src, continueLabel));
AST_FOR (dest, falseLabel) = copySymbol (AST_FOR (src, falseLabel));
AST_FOR (dest, condLabel) = copySymbol (AST_FOR (src, condLabel));
AST_FOR (dest, initExpr) = copyAst (AST_FOR (src, initExpr));
AST_FOR (dest, condExpr) = copyAst (AST_FOR (src, condExpr));
AST_FOR (dest, loopExpr) = copyAst (AST_FOR (src, loopExpr));
}
}
/*-----------------------------------------------------------------*/
/* copyAst - makes a copy of a given astession */
/*-----------------------------------------------------------------*/
ast *
copyAst (ast * src)
{
ast *dest;
if (!src)
return NULL;
dest = Safe_alloc ( sizeof (ast));
dest->type = src->type;
dest->lineno = src->lineno;
dest->level = src->level;
dest->funcName = src->funcName;
if (src->ftype)
dest->etype = getSpec (dest->ftype = copyLinkChain (src->ftype));
/* if this is a leaf */
/* if value */
if (src->type == EX_VALUE)
{
dest->opval.val = copyValue (src->opval.val);
goto exit;
}
/* if link */
if (src->type == EX_LINK)
{
dest->opval.lnk = copyLinkChain (src->opval.lnk);
goto exit;
}
dest->opval.op = src->opval.op;
/* if this is a node that has special values */
copyAstValues (dest, src);
dest->trueLabel = copySymbol (src->trueLabel);
dest->falseLabel = copySymbol (src->falseLabel);
dest->left = copyAst (src->left);
dest->right = copyAst (src->right);
exit:
return dest;
}
/*-----------------------------------------------------------------*/
/* hasSEFcalls - returns TRUE if tree has a function call */
/*-----------------------------------------------------------------*/
bool
hasSEFcalls (ast * tree)
{
if (!tree)
return FALSE;
if (tree->type == EX_OP &&
(tree->opval.op == CALL ||
tree->opval.op == PCALL ||
tree->opval.op == '=' ||
tree->opval.op == INC_OP ||
tree->opval.op == DEC_OP))
return TRUE;
return (hasSEFcalls (tree->left) |
hasSEFcalls (tree->right));
}
/*-----------------------------------------------------------------*/
/* isAstEqual - compares two asts & returns 1 if they are equal */
/*-----------------------------------------------------------------*/
int
isAstEqual (ast * t1, ast * t2)
{
if (!t1 && !t2)
return 1;
if (!t1 || !t2)
return 0;
/* match type */
if (t1->type != t2->type)
return 0;
switch (t1->type)
{
case EX_OP:
if (t1->opval.op != t2->opval.op)
return 0;
return (isAstEqual (t1->left, t2->left) &&
isAstEqual (t1->right, t2->right));
break;
case EX_VALUE:
if (t1->opval.val->sym)
{
if (!t2->opval.val->sym)
return 0;
else
return isSymbolEqual (t1->opval.val->sym,
t2->opval.val->sym);
}
else
{
if (t2->opval.val->sym)
return 0;
else
return (floatFromVal (t1->opval.val) ==
floatFromVal (t2->opval.val));
}
break;
/* only compare these two types */
default:
return 0;
}
return 0;
}
/*-----------------------------------------------------------------*/
/* resolveSymbols - resolve symbols from the symbol table */
/*-----------------------------------------------------------------*/
ast *
resolveSymbols (ast * tree)
{
/* walk the entire tree and check for values */
/* with symbols if we find one then replace */
/* symbol with that from the symbol table */
if (tree == NULL)
return tree;
/* print the line */
/* if not block & function */
if (tree->type == EX_OP &&
(tree->opval.op != FUNCTION &&
tree->opval.op != BLOCK &&
tree->opval.op != NULLOP))
{
filename = tree->filename;
lineno = tree->lineno;
}
/* make sure we resolve the true & false labels for ifx */
if (tree->type == EX_OP && tree->opval.op == IFX)
{
symbol *csym;
if (tree->trueLabel)
{
if ((csym = findSym (LabelTab, tree->trueLabel,
tree->trueLabel->name)))
tree->trueLabel = csym;
else
werror (E_LABEL_UNDEF, tree->trueLabel->name);
}
if (tree->falseLabel)
{
if ((csym = findSym (LabelTab,
tree->falseLabel,
tree->falseLabel->name)))
tree->falseLabel = csym;
else
werror (E_LABEL_UNDEF, tree->falseLabel->name);
}
}
/* if this is a label resolve it from the labelTab */
if (IS_AST_VALUE (tree) &&
tree->opval.val->sym &&
tree->opval.val->sym->islbl)
{
symbol *csym = findSym (LabelTab, tree->opval.val->sym,
tree->opval.val->sym->name);
if (!csym)
werror (E_LABEL_UNDEF, tree->opval.val->sym->name);
else
tree->opval.val->sym = csym;
goto resolveChildren;
}
/* do only for leafs */
if (IS_AST_VALUE (tree) &&
tree->opval.val->sym &&
!tree->opval.val->sym->implicit)
{
symbol *csym = findSymWithLevel (SymbolTab, tree->opval.val->sym);
/* if found in the symbol table & they r not the same */
if (csym && tree->opval.val->sym != csym)
{
tree->opval.val->sym = csym;
tree->opval.val->type = csym->type;
tree->opval.val->etype = csym->etype;
}
/* if not found in the symbol table */
/* mark it as undefined assume it is */
/* an integer in data space */
if (!csym && !tree->opval.val->sym->implicit)
{
/* if this is a function name then */
/* mark it as returning an int */
if (tree->funcName)
{
tree->opval.val->sym->type = newLink ();
DCL_TYPE (tree->opval.val->sym->type) = FUNCTION;
tree->opval.val->sym->type->next =
tree->opval.val->sym->etype = newIntLink ();
tree->opval.val->etype = tree->opval.val->etype;
tree->opval.val->type = tree->opval.val->sym->type;
werror (W_IMPLICIT_FUNC, tree->opval.val->sym->name);
allocVariables (tree->opval.val->sym);
}
else
{
tree->opval.val->sym->undefined = 1;
tree->opval.val->type =
tree->opval.val->etype = newIntLink ();
tree->opval.val->sym->type =
tree->opval.val->sym->etype = newIntLink ();
}
}
}
resolveChildren:
resolveSymbols (tree->left);
resolveSymbols (tree->right);
return tree;
}
/*-----------------------------------------------------------------*/
/* setAstLineno - walks a ast tree & sets the line number */
/*-----------------------------------------------------------------*/
int
setAstLineno (ast * tree, int lineno)
{
if (!tree)
return 0;
tree->lineno = lineno;
setAstLineno (tree->left, lineno);
setAstLineno (tree->right, lineno);
return 0;
}
#if 0
/* this functions seems to be superfluous?! kmh */
/*-----------------------------------------------------------------*/
/* resolveFromTable - will return the symbal table value */
/*-----------------------------------------------------------------*/
value *
resolveFromTable (value * val)
{
symbol *csym;
if (!val->sym)
return val;
csym = findSymWithLevel (SymbolTab, val->sym);
/* if found in the symbol table & they r not the same */
if (csym && val->sym != csym &&
csym->level == val->sym->level &&
csym->_isparm &&
!csym->ismyparm)
{
val->sym = csym;
val->type = csym->type;
val->etype = csym->etype;
}
return val;
}
#endif
/*-----------------------------------------------------------------*/
/* funcOfType :- function of type with name */
/*-----------------------------------------------------------------*/
symbol *
funcOfType (char *name, sym_link * type, sym_link * argType,
int nArgs, int rent)
{
symbol *sym;
/* create the symbol */
sym = newSymbol (name, 0);
/* setup return value */
sym->type = newLink ();
DCL_TYPE (sym->type) = FUNCTION;
sym->type->next = copyLinkChain (type);
sym->etype = getSpec (sym->type);
FUNC_ISREENT(sym->type) = rent;
/* if arguments required */
if (nArgs)
{
value *args;
args = FUNC_ARGS(sym->type) = newValue ();
while (nArgs--)
{
args->type = copyLinkChain (argType);
args->etype = getSpec (args->type);
if (!nArgs)
break;
args = args->next = newValue ();
}
}
/* save it */
addSymChain (sym);
sym->cdef = 1;
allocVariables (sym);
return sym;
}
/*-----------------------------------------------------------------*/
/* reverseParms - will reverse a parameter tree */
/*-----------------------------------------------------------------*/
void
reverseParms (ast * ptree)
{
ast *ttree;
if (!ptree)
return;
/* top down if we find a nonParm tree then quit */
if (ptree->type == EX_OP && ptree->opval.op == PARAM)
{
ttree = ptree->left;
ptree->left = ptree->right;
ptree->right = ttree;
reverseParms (ptree->left);
reverseParms (ptree->right);
}
return;
}
/*-----------------------------------------------------------------*/
/* processParms - makes sure the parameters are okay and do some */
/* processing with them */
/*-----------------------------------------------------------------*/
int
processParms (ast * func,
value *defParm,
ast * actParm,
int *parmNumber, // unused, although updated
bool rightmost)
{
/* if none of them exist */
if (!defParm && !actParm)
return 0;
if (defParm) {
if (getenv("DEBUG_SANITY")) {
fprintf (stderr, "processParms: %s ", defParm->name);
}
/* make sure the type is complete and sane */
checkTypeSanity(defParm->etype, defParm->name);
}
/* if the function is being called via a pointer & */
/* it has not been defined a reentrant then we cannot */
/* have parameters */
if (func->type != EX_VALUE && !IFFUNC_ISREENT (func->ftype) && !options.stackAuto)
{
werror (W_NONRENT_ARGS);
return 1;
}
/* if defined parameters ended but actual parameters */
/* exist and this is not defined as a variable arg */
if (!defParm && actParm && !IFFUNC_HASVARARGS(func->ftype))
{
werror (E_TOO_MANY_PARMS);
return 1;
}
/* if defined parameters present but no actual parameters */
if (defParm && !actParm)
{
werror (E_TOO_FEW_PARMS);
return 1;
}
if (IS_VOID(actParm->ftype)) {
werror (E_VOID_VALUE_USED);
return 1;
}
/* If this is a varargs function... */
if (!defParm && actParm && IFFUNC_HASVARARGS(func->ftype))
{
ast *newType = NULL;
sym_link *ftype;
if (IS_CAST_OP (actParm)
|| (IS_AST_LIT_VALUE (actParm) && actParm->values.literalFromCast))
{
/* Parameter was explicitly typecast; don't touch it. */
return 0;
}
/* The ternary ('?') operator is weird: the ftype of the
* operator is the type of the condition, but it will return a
* (possibly) different type.
*/
if (IS_TERNARY_OP(actParm))
{
assert(IS_COLON_OP(actParm->right));
assert(actParm->right->left);
ftype = actParm->right->left->ftype;
}
else
{
ftype = actParm->ftype;
}
/* If it's a small integer, upcast to int. */
if (IS_INTEGRAL (ftype)
&& (getSize (ftype) < (unsigned) INTSIZE))
{
newType = newAst_LINK(INTTYPE);
}
if (IS_PTR(ftype) && !IS_GENPTR(ftype))
{
newType = newAst_LINK (copyLinkChain(ftype));
DCL_TYPE (newType->opval.lnk) = GPOINTER;
}
if (IS_AGGREGATE (ftype))
{
newType = newAst_LINK (copyLinkChain (ftype));
DCL_TYPE (newType->opval.lnk) = GPOINTER;
}
if (newType)
{
/* cast required; change this op to a cast. */
ast *parmCopy = decorateType(resolveSymbols (copyAst (actParm)));
actParm->type = EX_OP;
actParm->opval.op = CAST;
actParm->left = newType;
actParm->right = parmCopy;
decorateType (actParm);
}
else if (actParm->type == EX_OP && actParm->opval.op == PARAM)
{
return (processParms (func, NULL, actParm->left, parmNumber, FALSE) ||
processParms (func, NULL, actParm->right, parmNumber, rightmost));
}
return 0;
}
/* if defined parameters ended but actual has not & */
/* reentrant */
if (!defParm && actParm &&
(options.stackAuto || IFFUNC_ISREENT (func->ftype)))
return 0;
resolveSymbols (actParm);
/* if this is a PARAM node then match left & right */
if (actParm->type == EX_OP && actParm->opval.op == PARAM)
{
return (processParms (func, defParm, actParm->left, parmNumber, FALSE) ||
processParms (func, defParm->next, actParm->right, parmNumber, rightmost));
}
else
{
/* If we have found a value node by following only right-hand links,
* then we know that there are no more values after us.
*
* Therefore, if there are more defined parameters, the caller didn't
* supply enough.
*/
if (rightmost && defParm->next)
{
werror (E_TOO_FEW_PARMS);
return 1;
}
}
/* the parameter type must be at least castable */
if (compareType (defParm->type, actParm->ftype) == 0) {
werror (E_INCOMPAT_TYPES);
printFromToType (actParm->ftype, defParm->type);
return 1;
}
/* if the parameter is castable then add the cast */
if (compareType (defParm->type, actParm->ftype) < 0)
{
ast *pTree = decorateType(resolveSymbols (copyAst (actParm)));
/* now change the current one to a cast */
actParm->type = EX_OP;
actParm->opval.op = CAST;
actParm->left = newAst_LINK (defParm->type);
actParm->right = pTree;
actParm->etype = defParm->etype;
actParm->ftype = defParm->type;
actParm->decorated=0; /* force typechecking */
decorateType (actParm);
}
/* make a copy and change the regparm type to the defined parm */
actParm->etype = getSpec (actParm->ftype = copyLinkChain (actParm->ftype));
SPEC_REGPARM (actParm->etype) = SPEC_REGPARM (defParm->etype);
(*parmNumber)++;
return 0;
}
/*-----------------------------------------------------------------*/
/* createIvalType - generates ival for basic types */
/*-----------------------------------------------------------------*/
ast *
createIvalType (ast * sym, sym_link * type, initList * ilist)
{
ast *iExpr;
/* if initList is deep */
if (ilist->type == INIT_DEEP)
ilist = ilist->init.deep;
iExpr = decorateType (resolveSymbols (list2expr (ilist)));
return decorateType (newNode ('=', sym, iExpr));
}
/*-----------------------------------------------------------------*/
/* createIvalStruct - generates initial value for structures */
/*-----------------------------------------------------------------*/
ast *
createIvalStruct (ast * sym, sym_link * type, initList * ilist)
{
ast *rast = NULL;
ast *lAst;
symbol *sflds;
initList *iloop;
sflds = SPEC_STRUCT (type)->fields;
if (ilist->type != INIT_DEEP)
{
werror (E_INIT_STRUCT, "");
return NULL;
}
iloop = ilist->init.deep;
for (; sflds; sflds = sflds->next, iloop = (iloop ? iloop->next : NULL))
{
/* if we have come to end */
if (!iloop)
break;
sflds->implicit = 1;
lAst = newNode (PTR_OP, newNode ('&', sym, NULL), newAst_VALUE (symbolVal (sflds)));
lAst = decorateType (resolveSymbols (lAst));
rast = decorateType (resolveSymbols (createIval (lAst, sflds->type, iloop, rast)));
}
return rast;
}
/*-----------------------------------------------------------------*/
/* createIvalArray - generates code for array initialization */
/*-----------------------------------------------------------------*/
ast *
createIvalArray (ast * sym, sym_link * type, initList * ilist)
{
ast *rast = NULL;
initList *iloop;
int lcnt = 0, size = 0;
literalList *literalL;
/* take care of the special case */
/* array of characters can be init */
/* by a string */
if (IS_CHAR (type->next))
if ((rast = createIvalCharPtr (sym,
type,
decorateType (resolveSymbols (list2expr (ilist))))))
return decorateType (resolveSymbols (rast));
/* not the special case */
if (ilist->type != INIT_DEEP)
{
werror (E_INIT_STRUCT, "");
return NULL;
}
iloop = ilist->init.deep;
lcnt = DCL_ELEM (type);
if (port->arrayInitializerSuppported && convertIListToConstList(ilist, &literalL))
{
ast *aSym;
aSym = decorateType (resolveSymbols(sym));
rast = newNode(ARRAYINIT, aSym, NULL);
rast->values.constlist = literalL;
// Make sure size is set to length of initializer list.
while (iloop)
{
size++;
iloop = iloop->next;
}
if (lcnt && size > lcnt)
{
// Array size was specified, and we have more initializers than needed.
char *name=sym->opval.val->sym->name;
int lineno=sym->opval.val->sym->lineDef;
werror (W_EXESS_ARRAY_INITIALIZERS, name, lineno);
}
}
else
{
for (;;)
{
ast *aSym;
aSym = newNode ('[', sym, newAst_VALUE (valueFromLit ((float) (size++))));
aSym = decorateType (resolveSymbols (aSym));
rast = createIval (aSym, type->next, iloop, rast);
iloop = (iloop ? iloop->next : NULL);
if (!iloop)
{
break;
}
/* no of elements given and we */
/* have generated for all of them */
if (!--lcnt)
{
// there has to be a better way
char *name=sym->opval.val->sym->name;
int lineno=sym->opval.val->sym->lineDef;
werror (W_EXESS_ARRAY_INITIALIZERS, name, lineno);
break;
}
}
}
/* if we have not been given a size */
if (!DCL_ELEM (type))
{
DCL_ELEM (type) = size;
}
return decorateType (resolveSymbols (rast));
}
/*-----------------------------------------------------------------*/
/* createIvalCharPtr - generates initial values for char pointers */
/*-----------------------------------------------------------------*/
ast *
createIvalCharPtr (ast * sym, sym_link * type, ast * iexpr)
{
ast *rast = NULL;
/* if this is a pointer & right is a literal array then */
/* just assignment will do */
if (IS_PTR (type) && ((IS_LITERAL (iexpr->etype) ||
SPEC_SCLS (iexpr->etype) == S_CODE)
&& IS_ARRAY (iexpr->ftype)))
return newNode ('=', sym, iexpr);
/* left side is an array so we have to assign each */
/* element */
if ((IS_LITERAL (iexpr->etype) ||
SPEC_SCLS (iexpr->etype) == S_CODE)
&& IS_ARRAY (iexpr->ftype))
{
/* for each character generate an assignment */
/* to the array element */
char *s = SPEC_CVAL (iexpr->etype).v_char;
int i = 0;
while (*s)
{
rast = newNode (NULLOP,
rast,
newNode ('=',
newNode ('[', sym,
newAst_VALUE (valueFromLit ((float) i))),
newAst_VALUE (valueFromLit (*s))));
i++;
s++;
}
rast = newNode (NULLOP,
rast,
newNode ('=',
newNode ('[', sym,
newAst_VALUE (valueFromLit ((float) i))),
newAst_VALUE (valueFromLit (*s))));
return decorateType (resolveSymbols (rast));
}
return NULL;
}
/*-----------------------------------------------------------------*/
/* createIvalPtr - generates initial value for pointers */
/*-----------------------------------------------------------------*/
ast *
createIvalPtr (ast * sym, sym_link * type, initList * ilist)
{
ast *rast;
ast *iexpr;
/* if deep then */
if (ilist->type == INIT_DEEP)
ilist = ilist->init.deep;
iexpr = decorateType (resolveSymbols (list2expr (ilist)));
/* if character pointer */
if (IS_CHAR (type->next))
if ((rast = createIvalCharPtr (sym, type, iexpr)))
return rast;
return newNode ('=', sym, iexpr);
}
/*-----------------------------------------------------------------*/
/* createIval - generates code for initial value */
/*-----------------------------------------------------------------*/
ast *
createIval (ast * sym, sym_link * type, initList * ilist, ast * wid)
{
ast *rast = NULL;
if (!ilist)
return NULL;
/* if structure then */
if (IS_STRUCT (type))
rast = createIvalStruct (sym, type, ilist);
else
/* if this is a pointer */
if (IS_PTR (type))
rast = createIvalPtr (sym, type, ilist);
else
/* if this is an array */
if (IS_ARRAY (type))
rast = createIvalArray (sym, type, ilist);
else
/* if type is SPECIFIER */
if (IS_SPEC (type))
rast = createIvalType (sym, type, ilist);
if (wid)
return decorateType (resolveSymbols (newNode (NULLOP, wid, rast)));
else
return decorateType (resolveSymbols (rast));
}
/*-----------------------------------------------------------------*/
/* initAggregates - initialises aggregate variables with initv */
/*-----------------------------------------------------------------*/
/* this has to go */ void printIval (symbol *, sym_link *, initList *, FILE *);
ast * initAggregates (symbol * sym, initList * ival, ast * wid) {
ast *ast;
symbol *newSym;
if (getenv("TRY_THE_NEW_INITIALIZER")) {
if (!TARGET_IS_MCS51 || !(options.model==MODEL_LARGE)) {
fprintf (stderr, "Can't \"TRY_THE_NEW_INITIALIZER\" unless "
"with -mmcs51 and --model-large\n");
exit(404);
}
if (SPEC_OCLS(sym->etype)==xdata &&
getSize(sym->type) > 16) { // else it isn't worth it: do it the old way
// copy this symbol
newSym=copySymbol (sym);
SPEC_OCLS(newSym->etype)=code;
sprintf (newSym->name, "%s_init__", sym->name);
sprintf (newSym->rname,"%s_init__", sym->rname);
addSym (SymbolTab, newSym, newSym->name, 0, 0, 1);
// emit it in the static segment
addSet(&statsg->syms, newSym);
// now memcpy() the entire array from cseg
ast=newNode (ARRAYINIT, // ASSIGN_AGGREGATE
newAst_VALUE (symbolVal (sym)),
newAst_VALUE (symbolVal (newSym)));
return decorateType(resolveSymbols(ast));
}
}
return createIval (newAst_VALUE (symbolVal (sym)), sym->type, ival, wid);
}
/*-----------------------------------------------------------------*/
/* gatherAutoInit - creates assignment expressions for initial */
/* values */
/*-----------------------------------------------------------------*/
ast *
gatherAutoInit (symbol * autoChain)
{
ast *init = NULL;
ast *work;
symbol *sym;
inInitMode = 1;
for (sym = autoChain; sym; sym = sym->next)
{
/* resolve the symbols in the ival */
if (sym->ival)
resolveIvalSym (sym->ival);
/* if this is a static variable & has an */
/* initial value the code needs to be lifted */
/* here to the main portion since they can be */
/* initialised only once at the start */
if (IS_STATIC (sym->etype) && sym->ival &&
SPEC_SCLS (sym->etype) != S_CODE)
{
symbol *newSym;
// this can only be a constant
if (!inInitMode && !IS_LITERAL(sym->ival->init.node->etype)) {
werror (E_CONST_EXPECTED);
}
/* insert the symbol into the symbol table */
/* with level = 0 & name = rname */
newSym = copySymbol (sym);
addSym (SymbolTab, newSym, newSym->rname, 0, 0, 1);
/* now lift the code to main */
if (IS_AGGREGATE (sym->type))
work = initAggregates (sym, sym->ival, NULL);
else
work = newNode ('=', newAst_VALUE (symbolVal (newSym)),
list2expr (sym->ival));
setAstLineno (work, sym->lineDef);
sym->ival = NULL;
if (staticAutos)
staticAutos = newNode (NULLOP, staticAutos, work);
else
staticAutos = work;
continue;
}
/* if there is an initial value */
if (sym->ival && SPEC_SCLS (sym->etype) != S_CODE)
{
if (IS_AGGREGATE (sym->type))
work = initAggregates (sym, sym->ival, NULL);
else
work = newNode ('=', newAst_VALUE (symbolVal (sym)),
list2expr (sym->ival));
setAstLineno (work, sym->lineDef);
sym->ival = NULL;
if (init)
init = newNode (NULLOP, init, work);
else
init = work;
}
}
inInitMode = 0;
return init;
}
/*-----------------------------------------------------------------*/
/* stringToSymbol - creates a symbol from a literal string */
/*-----------------------------------------------------------------*/
static value *
stringToSymbol (value * val)
{
char name[SDCC_NAME_MAX + 1];
static int charLbl = 0;
symbol *sym;
sprintf (name, "_str_%d", charLbl++);
sym = newSymbol (name, 0); /* make it @ level 0 */
strcpy (sym->rname, name);
/* copy the type from the value passed */
sym->type = copyLinkChain (val->type);
sym->etype = getSpec (sym->type);
/* change to storage class & output class */
SPEC_SCLS (sym->etype) = S_CODE;
SPEC_CVAL (sym->etype).v_char = SPEC_CVAL (val->etype).v_char;
SPEC_STAT (sym->etype) = 1;
/* make the level & block = 0 */
sym->block = sym->level = 0;
sym->isstrlit = 1;
/* create an ival */
sym->ival = newiList (INIT_NODE, newAst_VALUE (val));
if (noAlloc == 0)
{
/* allocate it */
addSymChain (sym);
allocVariables (sym);
}
sym->ival = NULL;
return symbolVal (sym);
}
/*-----------------------------------------------------------------*/
/* processBlockVars - will go thru the ast looking for block if */
/* a block is found then will allocate the syms */
/* will also gather the auto inits present */
/*-----------------------------------------------------------------*/
ast *
processBlockVars (ast * tree, int *stack, int action)
{
if (!tree)
return NULL;
/* if this is a block */
if (tree->type == EX_OP && tree->opval.op == BLOCK)
{
ast *autoInit;
if (action == ALLOCATE)
{
*stack += allocVariables (tree->values.sym);
autoInit = gatherAutoInit (tree->values.sym);
/* if there are auto inits then do them */
if (autoInit)
tree->left = newNode (NULLOP, autoInit, tree->left);
}
else /* action is deallocate */
deallocLocal (tree->values.sym);
}
processBlockVars (tree->left, stack, action);
processBlockVars (tree->right, stack, action);
return tree;
}
/*-----------------------------------------------------------------*/
/* constExprValue - returns the value of a constant expression */
/* or NULL if it is not a constant expression */
/*-----------------------------------------------------------------*/
value *
constExprValue (ast * cexpr, int check)
{
cexpr = decorateType (resolveSymbols (cexpr));
/* if this is not a constant then */
if (!IS_LITERAL (cexpr->ftype))
{
/* then check if this is a literal array
in code segment */
if (SPEC_SCLS (cexpr->etype) == S_CODE &&
SPEC_CVAL (cexpr->etype).v_char &&
IS_ARRAY (cexpr->ftype))
{
value *val = valFromType (cexpr->ftype);
SPEC_SCLS (val->etype) = S_LITERAL;
val->sym = cexpr->opval.val->sym;
val->sym->type = copyLinkChain (cexpr->ftype);
val->sym->etype = getSpec (val->sym->type);
strcpy (val->name, cexpr->opval.val->sym->rname);
return val;
}
/* if we are casting a literal value then */
if (IS_AST_OP (cexpr) &&
cexpr->opval.op == CAST &&
IS_LITERAL (cexpr->left->ftype))
return valCastLiteral (cexpr->ftype,
floatFromVal (cexpr->left->opval.val));
if (IS_AST_VALUE (cexpr))
return cexpr->opval.val;
if (check)
werror (E_CONST_EXPECTED, "found expression");
return NULL;
}
/* return the value */
return cexpr->opval.val;
}
/*-----------------------------------------------------------------*/
/* isLabelInAst - will return true if a given label is found */
/*-----------------------------------------------------------------*/
bool
isLabelInAst (symbol * label, ast * tree)
{
if (!tree || IS_AST_VALUE (tree) || IS_AST_LINK (tree))
return FALSE;
if (IS_AST_OP (tree) &&
tree->opval.op == LABEL &&
isSymbolEqual (AST_SYMBOL (tree->left), label))
return TRUE;
return isLabelInAst (label, tree->right) &&
isLabelInAst (label, tree->left);
}
/*-----------------------------------------------------------------*/
/* isLoopCountable - return true if the loop count can be determi- */
/* -ned at compile time . */
/*-----------------------------------------------------------------*/
bool
isLoopCountable (ast * initExpr, ast * condExpr, ast * loopExpr,
symbol ** sym, ast ** init, ast ** end)
{
/* the loop is considered countable if the following
conditions are true :-
a) initExpr :- <sym> = <const>
b) condExpr :- <sym> < <const1>
c) loopExpr :- <sym> ++
*/
/* first check the initExpr */
if (IS_AST_OP (initExpr) &&
initExpr->opval.op == '=' && /* is assignment */
IS_AST_SYM_VALUE (initExpr->left))
{ /* left is a symbol */
*sym = AST_SYMBOL (initExpr->left);
*init = initExpr->right;
}
else
return FALSE;
/* for now the symbol has to be of
integral type */
if (!IS_INTEGRAL ((*sym)->type))
return FALSE;
/* now check condExpr */
if (IS_AST_OP (condExpr))
{
switch (condExpr->opval.op)
{
case '<':
if (IS_AST_SYM_VALUE (condExpr->left) &&
isSymbolEqual (*sym, AST_SYMBOL (condExpr->left)) &&
IS_AST_LIT_VALUE (condExpr->right))
{
*end = condExpr->right;
break;
}
return FALSE;
case '!':
if (IS_AST_OP (condExpr->left) &&
condExpr->left->opval.op == '>' &&
IS_AST_LIT_VALUE (condExpr->left->right) &&
IS_AST_SYM_VALUE (condExpr->left->left) &&
isSymbolEqual (*sym, AST_SYMBOL (condExpr->left->left)))
{
*end = newNode ('+', condExpr->left->right,
newAst_VALUE (constVal ("1")));
break;
}
return FALSE;
default:
return FALSE;
}
}
/* check loop expression is of the form <sym>++ */
if (!IS_AST_OP (loopExpr))
return FALSE;
/* check if <sym> ++ */
if (loopExpr->opval.op == INC_OP)
{
if (loopExpr->left)
{
/* pre */
if (IS_AST_SYM_VALUE (loopExpr->left) &&
isSymbolEqual (*sym, AST_SYMBOL (loopExpr->left)))
return TRUE;
}
else
{
/* post */
if (IS_AST_SYM_VALUE (loopExpr->right) &&
isSymbolEqual (*sym, AST_SYMBOL (loopExpr->right)))
return TRUE;
}
}
else
{
/* check for += */
if (loopExpr->opval.op == ADD_ASSIGN)
{
if (IS_AST_SYM_VALUE (loopExpr->left) &&
isSymbolEqual (*sym, AST_SYMBOL (loopExpr->left)) &&
IS_AST_LIT_VALUE (loopExpr->right) &&
(int) AST_LIT_VALUE (loopExpr->right) != 1)
return TRUE;
}
}
return FALSE;
}
/*-----------------------------------------------------------------*/
/* astHasVolatile - returns true if ast contains any volatile */
/*-----------------------------------------------------------------*/
bool
astHasVolatile (ast * tree)
{
if (!tree)
return FALSE;
if (TETYPE (tree) && IS_VOLATILE (TETYPE (tree)))
return TRUE;
if (IS_AST_OP (tree))
return astHasVolatile (tree->left) ||
astHasVolatile (tree->right);
else
return FALSE;
}
/*-----------------------------------------------------------------*/
/* astHasPointer - return true if the ast contains any ptr variable */
/*-----------------------------------------------------------------*/
bool
astHasPointer (ast * tree)
{
if (!tree)
return FALSE;
if (IS_AST_LINK (tree))
return TRUE;
/* if we hit an array expression then check
only the left side */
if (IS_AST_OP (tree) && tree->opval.op == '[')
return astHasPointer (tree->left);
if (IS_AST_VALUE (tree))
return IS_PTR (tree->ftype) || IS_ARRAY (tree->ftype);
return astHasPointer (tree->left) ||
astHasPointer (tree->right);
}
/*-----------------------------------------------------------------*/
/* astHasSymbol - return true if the ast has the given symbol */
/*-----------------------------------------------------------------*/
bool
astHasSymbol (ast * tree, symbol * sym)
{
if (!tree || IS_AST_LINK (tree))
return FALSE;
if (IS_AST_VALUE (tree))
{
if (IS_AST_SYM_VALUE (tree))
return isSymbolEqual (AST_SYMBOL (tree), sym);
else
return FALSE;
}
return astHasSymbol (tree->left, sym) ||
astHasSymbol (tree->right, sym);
}
/*-----------------------------------------------------------------*/
/* astHasDeref - return true if the ast has an indirect access */
/*-----------------------------------------------------------------*/
static bool
astHasDeref (ast * tree)
{
if (!tree || IS_AST_LINK (tree) || IS_AST_VALUE(tree))
return FALSE;
if (tree->opval.op == '*' && tree->right == NULL) return TRUE;
return astHasDeref (tree->left) || astHasDeref (tree->right);
}
/*-----------------------------------------------------------------*/
/* isConformingBody - the loop body has to conform to a set of rules */
/* for the loop to be considered reversible read on for rules */
/*-----------------------------------------------------------------*/
bool
isConformingBody (ast * pbody, symbol * sym, ast * body)
{
/* we are going to do a pre-order traversal of the
tree && check for the following conditions. (essentially
a set of very shallow tests )
a) the sym passed does not participate in
any arithmetic operation
b) There are no function calls
c) all jumps are within the body
d) address of loop control variable not taken
e) if an assignment has a pointer on the
left hand side make sure right does not have
loop control variable */
/* if we reach the end or a leaf then true */
if (!pbody || IS_AST_LINK (pbody) || IS_AST_VALUE (pbody))
return TRUE;
/* if anything else is "volatile" */
if (IS_VOLATILE (TETYPE (pbody)))
return FALSE;
/* we will walk the body in a pre-order traversal for
efficiency sake */
switch (pbody->opval.op)
{
/*------------------------------------------------------------------*/
case '[':
return isConformingBody (pbody->right, sym, body);
/*------------------------------------------------------------------*/
case PTR_OP:
case '.':
return TRUE;
/*------------------------------------------------------------------*/
case INC_OP: /* incerement operator unary so left only */
case DEC_OP:
/* sure we are not sym is not modified */
if (pbody->left &&
IS_AST_SYM_VALUE (pbody->left) &&
isSymbolEqual (AST_SYMBOL (pbody->left), sym))
return FALSE;
if (pbody->right &&
IS_AST_SYM_VALUE (pbody->right) &&
isSymbolEqual (AST_SYMBOL (pbody->right), sym))
return FALSE;
return TRUE;
/*------------------------------------------------------------------*/
case '*': /* can be unary : if right is null then unary operation */
case '+':
case '-':
case '&':
/* if right is NULL then unary operation */
/*------------------------------------------------------------------*/
/*----------------------------*/
/* address of */
/*----------------------------*/
if (!pbody->right)
{
if (IS_AST_SYM_VALUE (pbody->left) &&
isSymbolEqual (AST_SYMBOL (pbody->left), sym))
return FALSE;
else
return isConformingBody (pbody->left, sym, body);
}
else
{
if (astHasSymbol (pbody->left, sym) ||
astHasSymbol (pbody->right, sym))
return FALSE;
}
/*------------------------------------------------------------------*/
case '|':
case '^':
case '/':
case '%':
case LEFT_OP:
case RIGHT_OP:
if (IS_AST_SYM_VALUE (pbody->left) &&
isSymbolEqual (AST_SYMBOL (pbody->left), sym))
return FALSE;
if (IS_AST_SYM_VALUE (pbody->right) &&
isSymbolEqual (AST_SYMBOL (pbody->right), sym))
return FALSE;
return isConformingBody (pbody->left, sym, body) &&
isConformingBody (pbody->right, sym, body);
case '~':
case '!':
case RRC:
case RLC:
case GETHBIT:
if (IS_AST_SYM_VALUE (pbody->left) &&
isSymbolEqual (AST_SYMBOL (pbody->left), sym))
return FALSE;
return isConformingBody (pbody->left, sym, body);
/*------------------------------------------------------------------*/
case AND_OP:
case OR_OP:
case '>':
case '<':
case LE_OP:
case GE_OP:
case EQ_OP:
case NE_OP:
case '?':
case ':':
case SIZEOF: /* evaluate wihout code generation */
return isConformingBody (pbody->left, sym, body) &&
isConformingBody (pbody->right, sym, body);
/*------------------------------------------------------------------*/
case '=':
/* if left has a pointer & right has loop
control variable then we cannot */
if (astHasPointer (pbody->left) &&
astHasSymbol (pbody->right, sym))
return FALSE;
if (astHasVolatile (pbody->left))
return FALSE;
if (IS_AST_SYM_VALUE (pbody->left) &&
isSymbolEqual (AST_SYMBOL (pbody->left), sym))
return FALSE;
if (astHasVolatile (pbody->left))
return FALSE;
if (astHasDeref(pbody->right)) return FALSE;
return isConformingBody (pbody->left, sym, body) &&
isConformingBody (pbody->right, sym, body);
case MUL_ASSIGN:
case DIV_ASSIGN:
case AND_ASSIGN:
case OR_ASSIGN:
case XOR_ASSIGN:
case RIGHT_ASSIGN:
case LEFT_ASSIGN:
case SUB_ASSIGN:
case ADD_ASSIGN:
assert ("Parser should not have generated this\n");
/*------------------------------------------------------------------*/
/*----------------------------*/
/* comma operator */
/*----------------------------*/
case ',':
return isConformingBody (pbody->left, sym, body) &&
isConformingBody (pbody->right, sym, body);
/*------------------------------------------------------------------*/
/*----------------------------*/
/* function call */
/*----------------------------*/
case CALL:
return FALSE;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* return statement */
/*----------------------------*/
case RETURN:
return FALSE;
case GOTO:
if (isLabelInAst (AST_SYMBOL (pbody->left), body))
return TRUE;
else
return FALSE;
case SWITCH:
if (astHasSymbol (pbody->left, sym))
return FALSE;
default:
break;
}
return isConformingBody (pbody->left, sym, body) &&
isConformingBody (pbody->right, sym, body);
}
/*-----------------------------------------------------------------*/
/* isLoopReversible - takes a for loop as input && returns true */
/* if the for loop is reversible. If yes will set the value of */
/* the loop control var & init value & termination value */
/*-----------------------------------------------------------------*/
bool
isLoopReversible (ast * loop, symbol ** loopCntrl,
ast ** init, ast ** end)
{
/* if option says don't do it then don't */
if (optimize.noLoopReverse)
return 0;
/* there are several tests to determine this */
/* for loop has to be of the form
for ( <sym> = <const1> ;
[<sym> < <const2>] ;
[<sym>++] | [<sym> += 1] | [<sym> = <sym> + 1] )
forBody */
if (!isLoopCountable (AST_FOR (loop, initExpr),
AST_FOR (loop, condExpr),
AST_FOR (loop, loopExpr),
loopCntrl, init, end))
return 0;
/* now do some serious checking on the body of the loop
*/
return isConformingBody (loop->left, *loopCntrl, loop->left);
}
/*-----------------------------------------------------------------*/
/* replLoopSym - replace the loop sym by loop sym -1 */
/*-----------------------------------------------------------------*/
static void
replLoopSym (ast * body, symbol * sym)
{
/* reached end */
if (!body || IS_AST_LINK (body))
return;
if (IS_AST_SYM_VALUE (body))
{
if (isSymbolEqual (AST_SYMBOL (body), sym))
{
body->type = EX_OP;
body->opval.op = '-';
body->left = newAst_VALUE (symbolVal (sym));
body->right = newAst_VALUE (constVal ("1"));
}
return;
}
replLoopSym (body->left, sym);
replLoopSym (body->right, sym);
}
/*-----------------------------------------------------------------*/
/* reverseLoop - do the actual loop reversal */
/*-----------------------------------------------------------------*/
ast *
reverseLoop (ast * loop, symbol * sym, ast * init, ast * end)
{
ast *rloop;
/* create the following tree
<sym> = loopCount ;
for_continue:
forbody
<sym> -= 1;
if (sym) goto for_continue ;
<sym> = end */
/* put it together piece by piece */
rloop = newNode (NULLOP,
createIf (newAst_VALUE (symbolVal (sym)),
newNode (GOTO,
newAst_VALUE (symbolVal (AST_FOR (loop, continueLabel))),
NULL), NULL),
newNode ('=',
newAst_VALUE (symbolVal (sym)),
end));
replLoopSym (loop->left, sym);
rloop = newNode (NULLOP,
newNode ('=',
newAst_VALUE (symbolVal (sym)),
newNode ('-', end, init)),
createLabel (AST_FOR (loop, continueLabel),
newNode (NULLOP,
loop->left,
newNode (NULLOP,
newNode (SUB_ASSIGN,
newAst_VALUE (symbolVal (sym)),
newAst_VALUE (constVal ("1"))),
rloop))));
return decorateType (rloop);
}
//#define DEMAND_INTEGER_PROMOTION
#ifdef DEMAND_INTEGER_PROMOTION
/*-----------------------------------------------------------------*/
/* walk a tree looking for the leaves. Add a typecast to the given */
/* type to each value leaf node. */
/*-----------------------------------------------------------------*/
void
pushTypeCastToLeaves (sym_link * type, ast * node, ast ** parentPtr)
{
if (!node || IS_CALLOP(node))
{
/* WTF? We should never get here. */
return;
}
if (!node->left && !node->right)
{
/* We're at a leaf; if it's a value, apply the typecast */
if (node->type == EX_VALUE && IS_INTEGRAL (TTYPE (node)))
{
*parentPtr = decorateType (newNode (CAST,
newAst_LINK (copyLinkChain (type)),
node));
}
}
else
{
if (node->left)
{
pushTypeCastToLeaves (type, node->left, &(node->left));
}
if (node->right)
{
pushTypeCastToLeaves (type, node->right, &(node->right));
}
}
}
#endif
/*-----------------------------------------------------------------*/
/* decorateType - compute type for this tree also does type cheking */
/* this is done bottom up, since type have to flow upwards */
/* it also does constant folding, and paramater checking */
/*-----------------------------------------------------------------*/
ast *
decorateType (ast * tree)
{
int parmNumber;
sym_link *p;
if (!tree)
return tree;
/* if already has type then do nothing */
if (tree->decorated)
return tree;
tree->decorated = 1;
/* print the line */
/* if not block & function */
if (tree->type == EX_OP &&
(tree->opval.op != FUNCTION &&
tree->opval.op != BLOCK &&
tree->opval.op != NULLOP))
{
filename = tree->filename;
lineno = tree->lineno;
}
/* if any child is an error | this one is an error do nothing */
if (tree->isError ||
(tree->left && tree->left->isError) ||
(tree->right && tree->right->isError))
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* leaf has been reached */
/*----------------------------*/
/* if this is of type value */
/* just get the type */
if (tree->type == EX_VALUE)
{
if (IS_LITERAL (tree->opval.val->etype))
{
/* if this is a character array then declare it */
if (IS_ARRAY (tree->opval.val->type))
tree->opval.val = stringToSymbol (tree->opval.val);
/* otherwise just copy the type information */
COPYTYPE (TTYPE (tree), TETYPE (tree), tree->opval.val->type);
return tree;
}
if (tree->opval.val->sym)
{
/* if the undefined flag is set then give error message */
if (tree->opval.val->sym->undefined)
{
werror (E_ID_UNDEF, tree->opval.val->sym->name);
/* assume int */
TTYPE (tree) = TETYPE (tree) =
tree->opval.val->type = tree->opval.val->sym->type =
tree->opval.val->etype = tree->opval.val->sym->etype =
copyLinkChain (INTTYPE);
}
else
{
/* if impilicit i.e. struct/union member then no type */
if (tree->opval.val->sym->implicit)
TTYPE (tree) = TETYPE (tree) = NULL;
else
{
/* else copy the type */
COPYTYPE (TTYPE (tree), TETYPE (tree), tree->opval.val->type);
/* and mark it as referenced */
tree->opval.val->sym->isref = 1;
}
}
}
return tree;
}
/* if type link for the case of cast */
if (tree->type == EX_LINK)
{
COPYTYPE (TTYPE (tree), TETYPE (tree), tree->opval.lnk);
return tree;
}
{
ast *dtl, *dtr;
dtl = decorateType (tree->left);
dtr = decorateType (tree->right);
/* this is to take care of situations
when the tree gets rewritten */
if (dtl != tree->left)
tree->left = dtl;
if (dtr != tree->right)
tree->right = dtr;
}
/* depending on type of operator do */
switch (tree->opval.op)
{
/*------------------------------------------------------------------*/
/*----------------------------*/
/* array node */
/*----------------------------*/
case '[':
/* determine which is the array & which the index */
if ((IS_ARRAY (RTYPE (tree)) || IS_PTR (RTYPE (tree))) && IS_INTEGRAL (LTYPE (tree)))
{
ast *tempTree = tree->left;
tree->left = tree->right;
tree->right = tempTree;
}
/* first check if this is a array or a pointer */
if ((!IS_ARRAY (LTYPE (tree))) && (!IS_PTR (LTYPE (tree))))
{
werror (E_NEED_ARRAY_PTR, "[]");
goto errorTreeReturn;
}
/* check if the type of the idx */
if (!IS_INTEGRAL (RTYPE (tree)))
{
werror (E_IDX_NOT_INT);
goto errorTreeReturn;
}
/* if the left is an rvalue then error */
if (LRVAL (tree))
{
werror (E_LVALUE_REQUIRED, "array access");
goto errorTreeReturn;
}
RRVAL (tree) = 1;
COPYTYPE (TTYPE (tree), TETYPE (tree), LTYPE (tree)->next);
if (IS_PTR(LTYPE(tree))) {
SPEC_CONST (TETYPE (tree)) = DCL_PTR_CONST (LTYPE(tree));
}
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* struct/union */
/*----------------------------*/
case '.':
/* if this is not a structure */
if (!IS_STRUCT (LTYPE (tree)))
{
werror (E_STRUCT_UNION, ".");
goto errorTreeReturn;
}
TTYPE (tree) = structElemType (LTYPE (tree),
(tree->right->type == EX_VALUE ?
tree->right->opval.val : NULL));
TETYPE (tree) = getSpec (TTYPE (tree));
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* struct/union pointer */
/*----------------------------*/
case PTR_OP:
/* if not pointer to a structure */
if (!IS_PTR (LTYPE (tree)))
{
werror (E_PTR_REQD);
goto errorTreeReturn;
}
if (!IS_STRUCT (LTYPE (tree)->next))
{
werror (E_STRUCT_UNION, "->");
goto errorTreeReturn;
}
TTYPE (tree) = structElemType (LTYPE (tree)->next,
(tree->right->type == EX_VALUE ?
tree->right->opval.val : NULL));
TETYPE (tree) = getSpec (TTYPE (tree));
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* ++/-- operation */
/*----------------------------*/
case INC_OP: /* incerement operator unary so left only */
case DEC_OP:
{
sym_link *ltc = (tree->right ? RTYPE (tree) : LTYPE (tree));
COPYTYPE (TTYPE (tree), TETYPE (tree), ltc);
if (!tree->initMode && IS_CONSTANT(TETYPE(tree)))
werror (E_CODE_WRITE, "++/--");
if (tree->right)
RLVAL (tree) = 1;
else
LLVAL (tree) = 1;
return tree;
}
/*------------------------------------------------------------------*/
/*----------------------------*/
/* bitwise and */
/*----------------------------*/
case '&': /* can be unary */
/* if right is NULL then unary operation */
if (tree->right) /* not an unary operation */
{
if (!IS_INTEGRAL (LTYPE (tree)) || !IS_INTEGRAL (RTYPE (tree)))
{
werror (E_BITWISE_OP);
werror (W_CONTINUE, "left & right types are ");
printTypeChain (LTYPE (tree), stderr);
fprintf (stderr, ",");
printTypeChain (RTYPE (tree), stderr);
fprintf (stderr, "\n");
goto errorTreeReturn;
}
/* if they are both literal */
if (IS_LITERAL (RTYPE (tree)) && IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valBitwise (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)), '&');
tree->right = tree->left = NULL;
TETYPE (tree) = tree->opval.val->etype;
TTYPE (tree) = tree->opval.val->type;
return tree;
}
/* see if this is a GETHBIT operation if yes
then return that */
{
ast *otree = optimizeGetHbit (tree);
if (otree != tree)
return decorateType (otree);
}
#if 0
// we can't do this because of "(int & 0xff) << 3"
/* if right or left is literal then result of that type */
if (IS_LITERAL (RTYPE (tree)))
{
TTYPE (tree) = copyLinkChain (RTYPE (tree));
TETYPE (tree) = getSpec (TTYPE (tree));
SPEC_SCLS (TETYPE (tree)) = S_AUTO;
}
else
{
if (IS_LITERAL (LTYPE (tree)))
{
TTYPE (tree) = copyLinkChain (LTYPE (tree));
TETYPE (tree) = getSpec (TTYPE (tree));
SPEC_SCLS (TETYPE (tree)) = S_AUTO;
}
else
{
TTYPE (tree) =
computeType (LTYPE (tree), RTYPE (tree));
TETYPE (tree) = getSpec (TTYPE (tree));
}
}
#else
TTYPE (tree) =
computeType (LTYPE (tree), RTYPE (tree));
TETYPE (tree) = getSpec (TTYPE (tree));
#endif
LRVAL (tree) = RRVAL (tree) = 1;
return tree;
}
/*------------------------------------------------------------------*/
/*----------------------------*/
/* address of */
/*----------------------------*/
p = newLink ();
p->class = DECLARATOR;
/* if bit field then error */
if (IS_BITVAR (tree->left->etype))
{
werror (E_ILLEGAL_ADDR, "address of bit variable");
goto errorTreeReturn;
}
if (SPEC_SCLS (tree->left->etype) == S_REGISTER)
{
werror (E_ILLEGAL_ADDR, "address of register variable");
goto errorTreeReturn;
}
if (IS_FUNC (LTYPE (tree)))
{
werror (E_ILLEGAL_ADDR, "address of function");
goto errorTreeReturn;
}
if (IS_LITERAL(LTYPE(tree)))
{
werror (E_ILLEGAL_ADDR, "address of literal");
goto errorTreeReturn;
}
if (LRVAL (tree))
{
werror (E_LVALUE_REQUIRED, "address of");
goto errorTreeReturn;
}
if (SPEC_SCLS (tree->left->etype) == S_CODE)
{
DCL_TYPE (p) = CPOINTER;
DCL_PTR_CONST (p) = port->mem.code_ro;
}
else if (SPEC_SCLS (tree->left->etype) == S_XDATA)
DCL_TYPE (p) = FPOINTER;
else if (SPEC_SCLS (tree->left->etype) == S_XSTACK)
DCL_TYPE (p) = PPOINTER;
else if (SPEC_SCLS (tree->left->etype) == S_IDATA)
DCL_TYPE (p) = IPOINTER;
else if (SPEC_SCLS (tree->left->etype) == S_EEPROM)
DCL_TYPE (p) = EEPPOINTER;
else
DCL_TYPE (p) = POINTER;
if (IS_AST_SYM_VALUE (tree->left))
{
AST_SYMBOL (tree->left)->addrtaken = 1;
AST_SYMBOL (tree->left)->allocreq = 1;
}
p->next = LTYPE (tree);
TTYPE (tree) = p;
TETYPE (tree) = getSpec (TTYPE (tree));
DCL_PTR_CONST (p) = SPEC_CONST (TETYPE (tree));
DCL_PTR_VOLATILE (p) = SPEC_VOLATILE (TETYPE (tree));
LLVAL (tree) = 1;
TLVAL (tree) = 1;
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* bitwise or */
/*----------------------------*/
case '|':
/* if the rewrite succeeds then don't go any furthur */
{
ast *wtree = optimizeRRCRLC (tree);
if (wtree != tree)
return decorateType (wtree);
}
/*------------------------------------------------------------------*/
/*----------------------------*/
/* bitwise xor */
/*----------------------------*/
case '^':
if (!IS_INTEGRAL (LTYPE (tree)) || !IS_INTEGRAL (RTYPE (tree)))
{
werror (E_BITWISE_OP);
werror (W_CONTINUE, "left & right types are ");
printTypeChain (LTYPE (tree), stderr);
fprintf (stderr, ",");
printTypeChain (RTYPE (tree), stderr);
fprintf (stderr, "\n");
goto errorTreeReturn;
}
/* if they are both literal then */
/* rewrite the tree */
if (IS_LITERAL (RTYPE (tree)) && IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valBitwise (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)),
tree->opval.op);
tree->right = tree->left = NULL;
TETYPE (tree) = tree->opval.val->etype;
TTYPE (tree) = tree->opval.val->type;
return tree;
}
LRVAL (tree) = RRVAL (tree) = 1;
TETYPE (tree) = getSpec (TTYPE (tree) =
computeType (LTYPE (tree),
RTYPE (tree)));
/*------------------------------------------------------------------*/
/*----------------------------*/
/* division */
/*----------------------------*/
case '/':
if (!IS_ARITHMETIC (LTYPE (tree)) || !IS_ARITHMETIC (RTYPE (tree)))
{
werror (E_INVALID_OP, "divide");
goto errorTreeReturn;
}
/* if they are both literal then */
/* rewrite the tree */
if (IS_LITERAL (RTYPE (tree)) && IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valDiv (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)));
tree->right = tree->left = NULL;
TETYPE (tree) = getSpec (TTYPE (tree) =
tree->opval.val->type);
return tree;
}
LRVAL (tree) = RRVAL (tree) = 1;
TETYPE (tree) = getSpec (TTYPE (tree) =
computeType (LTYPE (tree),
RTYPE (tree)));
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* modulus */
/*----------------------------*/
case '%':
if (!IS_INTEGRAL (LTYPE (tree)) || !IS_INTEGRAL (RTYPE (tree)))
{
werror (E_BITWISE_OP);
werror (W_CONTINUE, "left & right types are ");
printTypeChain (LTYPE (tree), stderr);
fprintf (stderr, ",");
printTypeChain (RTYPE (tree), stderr);
fprintf (stderr, "\n");
goto errorTreeReturn;
}
/* if they are both literal then */
/* rewrite the tree */
if (IS_LITERAL (RTYPE (tree)) && IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valMod (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)));
tree->right = tree->left = NULL;
TETYPE (tree) = getSpec (TTYPE (tree) =
tree->opval.val->type);
return tree;
}
LRVAL (tree) = RRVAL (tree) = 1;
TETYPE (tree) = getSpec (TTYPE (tree) =
computeType (LTYPE (tree),
RTYPE (tree)));
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* address dereference */
/*----------------------------*/
case '*': /* can be unary : if right is null then unary operation */
if (!tree->right)
{
if (!IS_PTR (LTYPE (tree)) && !IS_ARRAY (LTYPE (tree)))
{
werror (E_PTR_REQD);
goto errorTreeReturn;
}
if (LRVAL (tree))
{
werror (E_LVALUE_REQUIRED, "pointer deref");
goto errorTreeReturn;
}
TTYPE (tree) = copyLinkChain ((IS_PTR (LTYPE (tree)) || IS_ARRAY (LTYPE (tree))) ?
LTYPE (tree)->next : NULL);
TETYPE (tree) = getSpec (TTYPE (tree));
SPEC_CONST (TETYPE (tree)) = DCL_PTR_CONST (LTYPE(tree));
return tree;
}
/*------------------------------------------------------------------*/
/*----------------------------*/
/* multiplication */
/*----------------------------*/
if (!IS_ARITHMETIC (LTYPE (tree)) || !IS_ARITHMETIC (RTYPE (tree)))
{
werror (E_INVALID_OP, "multiplication");
goto errorTreeReturn;
}
/* if they are both literal then */
/* rewrite the tree */
if (IS_LITERAL (RTYPE (tree)) && IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valMult (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)));
tree->right = tree->left = NULL;
TETYPE (tree) = getSpec (TTYPE (tree) =
tree->opval.val->type);
return tree;
}
/* if left is a literal exchange left & right */
if (IS_LITERAL (LTYPE (tree)))
{
ast *tTree = tree->left;
tree->left = tree->right;
tree->right = tTree;
}
LRVAL (tree) = RRVAL (tree) = 1;
/* promote result to int if left & right are char
this will facilitate hardware multiplies 8bit x 8bit = 16bit */
if (IS_CHAR(LETYPE(tree)) && IS_CHAR(RETYPE(tree))) {
TETYPE (tree) = getSpec (TTYPE (tree) =
computeType (LTYPE (tree),
RTYPE (tree)));
SPEC_NOUN(TETYPE(tree)) = V_INT;
} else {
TETYPE (tree) = getSpec (TTYPE (tree) =
computeType (LTYPE (tree),
RTYPE (tree)));
}
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* unary '+' operator */
/*----------------------------*/
case '+':
/* if unary plus */
if (!tree->right)
{
if (!IS_INTEGRAL (LTYPE (tree)))
{
werror (E_UNARY_OP, '+');
goto errorTreeReturn;
}
/* if left is a literal then do it */
if (IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valFromType (LETYPE (tree));
tree->left = NULL;
TETYPE (tree) = TTYPE (tree) = tree->opval.val->type;
return tree;
}
LRVAL (tree) = 1;
COPYTYPE (TTYPE (tree), TETYPE (tree), LTYPE (tree));
return tree;
}
/*------------------------------------------------------------------*/
/*----------------------------*/
/* addition */
/*----------------------------*/
/* this is not a unary operation */
/* if both pointers then problem */
if ((IS_PTR (LTYPE (tree)) || IS_ARRAY (LTYPE (tree))) &&
(IS_PTR (RTYPE (tree)) || IS_ARRAY (RTYPE (tree))))
{
werror (E_PTR_PLUS_PTR);
goto errorTreeReturn;
}
if (!IS_ARITHMETIC (LTYPE (tree)) &&
!IS_PTR (LTYPE (tree)) && !IS_ARRAY (LTYPE (tree)))
{
werror (E_PLUS_INVALID, "+");
goto errorTreeReturn;
}
if (!IS_ARITHMETIC (RTYPE (tree)) &&
!IS_PTR (RTYPE (tree)) && !IS_ARRAY (RTYPE (tree)))
{
werror (E_PLUS_INVALID, "+");
goto errorTreeReturn;
}
/* if they are both literal then */
/* rewrite the tree */
if (IS_LITERAL (RTYPE (tree)) && IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valPlus (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)));
tree->right = tree->left = NULL;
TETYPE (tree) = getSpec (TTYPE (tree) =
tree->opval.val->type);
return tree;
}
/* if the right is a pointer or left is a literal
xchange left & right */
if (IS_ARRAY (RTYPE (tree)) ||
IS_PTR (RTYPE (tree)) ||
IS_LITERAL (LTYPE (tree)))
{
ast *tTree = tree->left;
tree->left = tree->right;
tree->right = tTree;
}
LRVAL (tree) = RRVAL (tree) = 1;
/* if the left is a pointer */
if (IS_PTR (LTYPE (tree)))
TETYPE (tree) = getSpec (TTYPE (tree) =
LTYPE (tree));
else
TETYPE (tree) = getSpec (TTYPE (tree) =
computeType (LTYPE (tree),
RTYPE (tree)));
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* unary '-' */
/*----------------------------*/
case '-': /* can be unary */
/* if right is null then unary */
if (!tree->right)
{
if (!IS_ARITHMETIC (LTYPE (tree)))
{
werror (E_UNARY_OP, tree->opval.op);
goto errorTreeReturn;
}
/* if left is a literal then do it */
if (IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valUnaryPM (valFromType (LETYPE (tree)));
tree->left = NULL;
TETYPE (tree) = TTYPE (tree) = tree->opval.val->type;
SPEC_USIGN(TETYPE(tree)) = 0;
return tree;
}
LRVAL (tree) = 1;
TTYPE (tree) = LTYPE (tree);
return tree;
}
/*------------------------------------------------------------------*/
/*----------------------------*/
/* subtraction */
/*----------------------------*/
if (!(IS_PTR (LTYPE (tree)) ||
IS_ARRAY (LTYPE (tree)) ||
IS_ARITHMETIC (LTYPE (tree))))
{
werror (E_PLUS_INVALID, "-");
goto errorTreeReturn;
}
if (!(IS_PTR (RTYPE (tree)) ||
IS_ARRAY (RTYPE (tree)) ||
IS_ARITHMETIC (RTYPE (tree))))
{
werror (E_PLUS_INVALID, "-");
goto errorTreeReturn;
}
if ((IS_PTR (LTYPE (tree)) || IS_ARRAY (LTYPE (tree))) &&
!(IS_PTR (RTYPE (tree)) || IS_ARRAY (RTYPE (tree)) ||
IS_INTEGRAL (RTYPE (tree))))
{
werror (E_PLUS_INVALID, "-");
goto errorTreeReturn;
}
/* if they are both literal then */
/* rewrite the tree */
if (IS_LITERAL (RTYPE (tree)) && IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valMinus (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)));
tree->right = tree->left = NULL;
TETYPE (tree) = getSpec (TTYPE (tree) =
tree->opval.val->type);
return tree;
}
/* if the left & right are equal then zero */
if (isAstEqual (tree->left, tree->right))
{
tree->type = EX_VALUE;
tree->left = tree->right = NULL;
tree->opval.val = constVal ("0");
TETYPE (tree) = TTYPE (tree) = tree->opval.val->type;
return tree;
}
/* if both of them are pointers or arrays then */
/* the result is going to be an integer */
if ((IS_ARRAY (LTYPE (tree)) || IS_PTR (LTYPE (tree))) &&
(IS_ARRAY (RTYPE (tree)) || IS_PTR (RTYPE (tree))))
TETYPE (tree) = TTYPE (tree) = newIntLink ();
else
/* if only the left is a pointer */
/* then result is a pointer */
if (IS_PTR (LTYPE (tree)) || IS_ARRAY (LTYPE (tree)))
TETYPE (tree) = getSpec (TTYPE (tree) =
LTYPE (tree));
else
TETYPE (tree) = getSpec (TTYPE (tree) =
computeType (LTYPE (tree),
RTYPE (tree)));
LRVAL (tree) = RRVAL (tree) = 1;
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* compliment */
/*----------------------------*/
case '~':
/* can be only integral type */
if (!IS_INTEGRAL (LTYPE (tree)))
{
werror (E_UNARY_OP, tree->opval.op);
goto errorTreeReturn;
}
/* if left is a literal then do it */
if (IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valComplement (valFromType (LETYPE (tree)));
tree->left = NULL;
TETYPE (tree) = TTYPE (tree) = tree->opval.val->type;
return tree;
}
LRVAL (tree) = 1;
COPYTYPE (TTYPE (tree), TETYPE (tree), LTYPE (tree));
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* not */
/*----------------------------*/
case '!':
/* can be pointer */
if (!IS_ARITHMETIC (LTYPE (tree)) &&
!IS_PTR (LTYPE (tree)) &&
!IS_ARRAY (LTYPE (tree)))
{
werror (E_UNARY_OP, tree->opval.op);
goto errorTreeReturn;
}
/* if left is a literal then do it */
if (IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valNot (valFromType (LETYPE (tree)));
tree->left = NULL;
TETYPE (tree) = TTYPE (tree) = tree->opval.val->type;
return tree;
}
LRVAL (tree) = 1;
TTYPE (tree) = TETYPE (tree) = newCharLink ();
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* shift */
/*----------------------------*/
case RRC:
case RLC:
TTYPE (tree) = LTYPE (tree);
TETYPE (tree) = LETYPE (tree);
return tree;
case GETHBIT:
TTYPE (tree) = TETYPE (tree) = newCharLink ();
return tree;
case LEFT_OP:
case RIGHT_OP:
if (!IS_INTEGRAL (LTYPE (tree)) || !IS_INTEGRAL (tree->left->etype))
{
werror (E_SHIFT_OP_INVALID);
werror (W_CONTINUE, "left & right types are ");
printTypeChain (LTYPE (tree), stderr);
fprintf (stderr, ",");
printTypeChain (RTYPE (tree), stderr);
fprintf (stderr, "\n");
goto errorTreeReturn;
}
/* if they are both literal then */
/* rewrite the tree */
if (IS_LITERAL (RTYPE (tree)) && IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valShift (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)),
(tree->opval.op == LEFT_OP ? 1 : 0));
tree->right = tree->left = NULL;
TETYPE (tree) = getSpec (TTYPE (tree) =
tree->opval.val->type);
return tree;
}
/* if only the right side is a literal & we are
shifting more than size of the left operand then zero */
if (IS_LITERAL (RTYPE (tree)) &&
((unsigned) floatFromVal (valFromType (RETYPE (tree)))) >=
(getSize (LTYPE (tree)) * 8))
{
werror (W_SHIFT_CHANGED,
(tree->opval.op == LEFT_OP ? "left" : "right"));
tree->type = EX_VALUE;
tree->left = tree->right = NULL;
tree->opval.val = constVal ("0");
TETYPE (tree) = TTYPE (tree) = tree->opval.val->type;
return tree;
}
LRVAL (tree) = RRVAL (tree) = 1;
if (IS_LITERAL (LTYPE (tree)) && !IS_LITERAL (RTYPE (tree)))
{
COPYTYPE (TTYPE (tree), TETYPE (tree), RTYPE (tree));
}
else
{
COPYTYPE (TTYPE (tree), TETYPE (tree), LTYPE (tree));
}
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* casting */
/*----------------------------*/
case CAST: /* change the type */
/* cannot cast to an aggregate type */
if (IS_AGGREGATE (LTYPE (tree)))
{
werror (E_CAST_ILLEGAL);
goto errorTreeReturn;
}
/* make sure the type is complete and sane */
checkTypeSanity(LETYPE(tree), "(cast)");
#if 0
/* if the right is a literal replace the tree */
if (IS_LITERAL (RETYPE (tree))) {
if (!IS_PTR (LTYPE (tree))) {
tree->type = EX_VALUE;
tree->opval.val =
valCastLiteral (LTYPE (tree),
floatFromVal (valFromType (RETYPE (tree))));
tree->left = NULL;
tree->right = NULL;
TTYPE (tree) = tree->opval.val->type;
tree->values.literalFromCast = 1;
} else if (IS_GENPTR(LTYPE(tree)) && !IS_PTR(RTYPE(tree)) &&
((int)floatFromVal(valFromType(RETYPE(tree)))) !=0 ) /* special case of NULL */ {
sym_link *rest = LTYPE(tree)->next;
werror(W_LITERAL_GENERIC);
TTYPE(tree) = newLink();
DCL_TYPE(TTYPE(tree)) = FPOINTER;
TTYPE(tree)->next = rest;
tree->left->opval.lnk = TTYPE(tree);
LRVAL (tree) = 1;
} else {
TTYPE (tree) = LTYPE (tree);
LRVAL (tree) = 1;
}
} else {
TTYPE (tree) = LTYPE (tree);
LRVAL (tree) = 1;
}
#else
/* if pointer to struct then check names */
if (IS_PTR(LTYPE(tree)) && IS_STRUCT(LTYPE(tree)->next) &&
IS_PTR(RTYPE(tree)) && IS_STRUCT(RTYPE(tree)->next) &&
strcmp(SPEC_STRUCT(LETYPE(tree))->tag,SPEC_STRUCT(RETYPE(tree))->tag)) {
werror(W_CAST_STRUCT_PTR,SPEC_STRUCT(RETYPE(tree))->tag,SPEC_STRUCT(LETYPE(tree))->tag);
}
/* if the right is a literal replace the tree */
if (IS_LITERAL (RETYPE (tree)) && !IS_PTR (LTYPE (tree))) {
tree->type = EX_VALUE;
tree->opval.val =
valCastLiteral (LTYPE (tree),
floatFromVal (valFromType (RETYPE (tree))));
tree->left = NULL;
tree->right = NULL;
TTYPE (tree) = tree->opval.val->type;
tree->values.literalFromCast = 1;
} else {
TTYPE (tree) = LTYPE (tree);
LRVAL (tree) = 1;
}
#endif
TETYPE (tree) = getSpec (TTYPE (tree));
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* logical &&, || */
/*----------------------------*/
case AND_OP:
case OR_OP:
/* each must me arithmetic type or be a pointer */
if (!IS_PTR (LTYPE (tree)) &&
!IS_ARRAY (LTYPE (tree)) &&
!IS_INTEGRAL (LTYPE (tree)))
{
werror (E_COMPARE_OP);
goto errorTreeReturn;
}
if (!IS_PTR (RTYPE (tree)) &&
!IS_ARRAY (RTYPE (tree)) &&
!IS_INTEGRAL (RTYPE (tree)))
{
werror (E_COMPARE_OP);
goto errorTreeReturn;
}
/* if they are both literal then */
/* rewrite the tree */
if (IS_LITERAL (RTYPE (tree)) &&
IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valLogicAndOr (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)),
tree->opval.op);
tree->right = tree->left = NULL;
TETYPE (tree) = getSpec (TTYPE (tree) =
tree->opval.val->type);
return tree;
}
LRVAL (tree) = RRVAL (tree) = 1;
TTYPE (tree) = TETYPE (tree) = newCharLink ();
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* comparison operators */
/*----------------------------*/
case '>':
case '<':
case LE_OP:
case GE_OP:
case EQ_OP:
case NE_OP:
{
ast *lt = optimizeCompare (tree);
if (tree != lt)
return lt;
}
/* if they are pointers they must be castable */
if (IS_PTR (LTYPE (tree)) && IS_PTR (RTYPE (tree)))
{
if (compareType (LTYPE (tree), RTYPE (tree)) == 0)
{
werror (E_COMPARE_OP);
fprintf (stderr, "comparing type ");
printTypeChain (LTYPE (tree), stderr);
fprintf (stderr, "to type ");
printTypeChain (RTYPE (tree), stderr);
fprintf (stderr, "\n");
goto errorTreeReturn;
}
}
/* else they should be promotable to one another */
else
{
if (!((IS_PTR (LTYPE (tree)) && IS_LITERAL (RTYPE (tree))) ||
(IS_PTR (RTYPE (tree)) && IS_LITERAL (LTYPE (tree)))))
if (compareType (LTYPE (tree), RTYPE (tree)) == 0)
{
werror (E_COMPARE_OP);
fprintf (stderr, "comparing type ");
printTypeChain (LTYPE (tree), stderr);
fprintf (stderr, "to type ");
printTypeChain (RTYPE (tree), stderr);
fprintf (stderr, "\n");
goto errorTreeReturn;
}
}
/* if they are both literal then */
/* rewrite the tree */
if (IS_LITERAL (RTYPE (tree)) &&
IS_LITERAL (LTYPE (tree)))
{
tree->type = EX_VALUE;
tree->opval.val = valCompare (valFromType (LETYPE (tree)),
valFromType (RETYPE (tree)),
tree->opval.op);
tree->right = tree->left = NULL;
TETYPE (tree) = getSpec (TTYPE (tree) =
tree->opval.val->type);
return tree;
}
LRVAL (tree) = RRVAL (tree) = 1;
TTYPE (tree) = TETYPE (tree) = newCharLink ();
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* sizeof */
/*----------------------------*/
case SIZEOF: /* evaluate wihout code generation */
/* change the type to a integer */
tree->type = EX_VALUE;
sprintf (buffer, "%d", (getSize (tree->right->ftype)));
tree->opval.val = constVal (buffer);
tree->right = tree->left = NULL;
TETYPE (tree) = getSpec (TTYPE (tree) =
tree->opval.val->type);
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* conditional operator '?' */
/*----------------------------*/
case '?':
/* the type is value of the colon operator (on the right) */
assert(IS_COLON_OP(tree->right));
/* if already known then replace the tree : optimizer will do it
but faster to do it here */
if (IS_LITERAL (LTYPE(tree))) {
if ( ((int) floatFromVal (valFromType (LETYPE (tree)))) != 0) {
return tree->right->left ;
} else {
return tree->right->right ;
}
} else {
TTYPE (tree) = RTYPE(tree); // #HACK LTYPE(tree).
TETYPE (tree) = getSpec (TTYPE (tree));
}
return tree;
case ':':
/* if they don't match we have a problem */
if (compareType (LTYPE (tree), RTYPE (tree)) == 0)
{
werror (E_TYPE_MISMATCH, "conditional operator", " ");
goto errorTreeReturn;
}
TTYPE (tree) = computeType (LTYPE (tree), RTYPE (tree));
TETYPE (tree) = getSpec (TTYPE (tree));
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* assignment operators */
/*----------------------------*/
case MUL_ASSIGN:
case DIV_ASSIGN:
/* for these it must be both must be integral */
if (!IS_ARITHMETIC (LTYPE (tree)) ||
!IS_ARITHMETIC (RTYPE (tree)))
{
werror (E_OPS_INTEGRAL);
goto errorTreeReturn;
}
RRVAL (tree) = 1;
TETYPE (tree) = getSpec (TTYPE (tree) = LTYPE (tree));
if (!tree->initMode && IS_CONSTANT (LETYPE (tree)))
werror (E_CODE_WRITE, " ");
if (LRVAL (tree))
{
werror (E_LVALUE_REQUIRED, "*= or /=");
goto errorTreeReturn;
}
LLVAL (tree) = 1;
return tree;
case AND_ASSIGN:
case OR_ASSIGN:
case XOR_ASSIGN:
case RIGHT_ASSIGN:
case LEFT_ASSIGN:
/* for these it must be both must be integral */
if (!IS_INTEGRAL (LTYPE (tree)) ||
!IS_INTEGRAL (RTYPE (tree)))
{
werror (E_OPS_INTEGRAL);
goto errorTreeReturn;
}
RRVAL (tree) = 1;
TETYPE (tree) = getSpec (TTYPE (tree) = LTYPE (tree));
if (!tree->initMode && IS_CONSTANT (LETYPE (tree)))
werror (E_CODE_WRITE, " ");
if (LRVAL (tree))
{
werror (E_LVALUE_REQUIRED, "&= or |= or ^= or >>= or <<=");
goto errorTreeReturn;
}
LLVAL (tree) = 1;
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* -= operator */
/*----------------------------*/
case SUB_ASSIGN:
if (!(IS_PTR (LTYPE (tree)) ||
IS_ARITHMETIC (LTYPE (tree))))
{
werror (E_PLUS_INVALID, "-=");
goto errorTreeReturn;
}
if (!(IS_PTR (RTYPE (tree)) ||
IS_ARITHMETIC (RTYPE (tree))))
{
werror (E_PLUS_INVALID, "-=");
goto errorTreeReturn;
}
RRVAL (tree) = 1;
TETYPE (tree) = getSpec (TTYPE (tree) =
computeType (LTYPE (tree),
RTYPE (tree)));
if (!tree->initMode && IS_CONSTANT (LETYPE (tree)))
werror (E_CODE_WRITE, " ");
if (LRVAL (tree))
{
werror (E_LVALUE_REQUIRED, "-=");
goto errorTreeReturn;
}
LLVAL (tree) = 1;
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* += operator */
/*----------------------------*/
case ADD_ASSIGN:
/* this is not a unary operation */
/* if both pointers then problem */
if (IS_PTR (LTYPE (tree)) && IS_PTR (RTYPE (tree)))
{
werror (E_PTR_PLUS_PTR);
goto errorTreeReturn;
}
if (!IS_ARITHMETIC (LTYPE (tree)) && !IS_PTR (LTYPE (tree)))
{
werror (E_PLUS_INVALID, "+=");
goto errorTreeReturn;
}
if (!IS_ARITHMETIC (RTYPE (tree)) && !IS_PTR (RTYPE (tree)))
{
werror (E_PLUS_INVALID, "+=");
goto errorTreeReturn;
}
RRVAL (tree) = 1;
TETYPE (tree) = getSpec (TTYPE (tree) =
computeType (LTYPE (tree),
RTYPE (tree)));
if (!tree->initMode && IS_CONSTANT (LETYPE (tree)))
werror (E_CODE_WRITE, " ");
if (LRVAL (tree))
{
werror (E_LVALUE_REQUIRED, "+=");
goto errorTreeReturn;
}
tree->right = decorateType (newNode ('+', copyAst (tree->left), tree->right));
tree->opval.op = '=';
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* straight assignemnt */
/*----------------------------*/
case '=':
/* cannot be an aggregate */
if (IS_AGGREGATE (LTYPE (tree)))
{
werror (E_AGGR_ASSIGN);
goto errorTreeReturn;
}
/* they should either match or be castable */
if (compareType (LTYPE (tree), RTYPE (tree)) == 0)
{
werror (E_TYPE_MISMATCH, "assignment", " ");
fprintf (stderr, "type --> '");
printTypeChain (RTYPE (tree), stderr);
fprintf (stderr, "' ");
fprintf (stderr, "assigned to type --> '");
printTypeChain (LTYPE (tree), stderr);
fprintf (stderr, "'\n");
goto errorTreeReturn;
}
/* if the left side of the tree is of type void
then report error */
if (IS_VOID (LTYPE (tree)))
{
werror (E_CAST_ZERO);
printFromToType(RTYPE(tree), LTYPE(tree));
}
TETYPE (tree) = getSpec (TTYPE (tree) =
LTYPE (tree));
RRVAL (tree) = 1;
LLVAL (tree) = 1;
if (!tree->initMode ) {
if ((IS_SPEC(LETYPE(tree)) && IS_CONSTANT (LETYPE (tree))))
werror (E_CODE_WRITE, " ");
}
if (LRVAL (tree))
{
werror (E_LVALUE_REQUIRED, "=");
goto errorTreeReturn;
}
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* comma operator */
/*----------------------------*/
case ',':
TETYPE (tree) = getSpec (TTYPE (tree) = RTYPE (tree));
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* function call */
/*----------------------------*/
case CALL:
parmNumber = 1;
if (processParms (tree->left,
FUNC_ARGS(tree->left->ftype),
tree->right, &parmNumber, TRUE)) {
goto errorTreeReturn;
}
if (options.stackAuto || IFFUNC_ISREENT (LTYPE (tree)))
{
//FUNC_ARGS(tree->left->ftype) =
//reverseVal (FUNC_ARGS(tree->left->ftype));
reverseParms (tree->right);
}
TETYPE (tree) = getSpec (TTYPE (tree) = LTYPE (tree)->next);
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* return statement */
/*----------------------------*/
case RETURN:
if (!tree->right)
goto voidcheck;
if (compareType (currFunc->type->next, RTYPE (tree)) == 0)
{
werror (W_RETURN_MISMATCH);
printFromToType (RTYPE(tree), currFunc->type->next);
goto errorTreeReturn;
}
if (IS_VOID (currFunc->type->next)
&& tree->right &&
!IS_VOID (RTYPE (tree)))
{
werror (E_FUNC_VOID);
goto errorTreeReturn;
}
/* if there is going to be a casing required then add it */
if (compareType (currFunc->type->next, RTYPE (tree)) < 0)
{
tree->right =
decorateType (newNode (CAST,
newAst_LINK (copyLinkChain (currFunc->type->next)),
tree->right));
}
RRVAL (tree) = 1;
return tree;
voidcheck:
if (!IS_VOID (currFunc->type->next) && tree->right == NULL)
{
werror (E_VOID_FUNC, currFunc->name);
goto errorTreeReturn;
}
TTYPE (tree) = TETYPE (tree) = NULL;
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* switch statement */
/*----------------------------*/
case SWITCH:
/* the switch value must be an integer */
if (!IS_INTEGRAL (LTYPE (tree)))
{
werror (E_SWITCH_NON_INTEGER);
goto errorTreeReturn;
}
LRVAL (tree) = 1;
TTYPE (tree) = TETYPE (tree) = NULL;
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* ifx Statement */
/*----------------------------*/
case IFX:
tree->left = backPatchLabels (tree->left,
tree->trueLabel,
tree->falseLabel);
TTYPE (tree) = TETYPE (tree) = NULL;
return tree;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* for Statement */
/*----------------------------*/
case FOR:
decorateType (resolveSymbols (AST_FOR (tree, initExpr)));
decorateType (resolveSymbols (AST_FOR (tree, condExpr)));
decorateType (resolveSymbols (AST_FOR (tree, loopExpr)));
/* if the for loop is reversible then
reverse it otherwise do what we normally
do */
{
symbol *sym;
ast *init, *end;
if (isLoopReversible (tree, &sym, &init, &end))
return reverseLoop (tree, sym, init, end);
else
return decorateType (createFor (AST_FOR (tree, trueLabel),
AST_FOR (tree, continueLabel),
AST_FOR (tree, falseLabel),
AST_FOR (tree, condLabel),
AST_FOR (tree, initExpr),
AST_FOR (tree, condExpr),
AST_FOR (tree, loopExpr),
tree->left));
}
default:
TTYPE (tree) = TETYPE (tree) = NULL;
return tree;
}
/* some error found this tree will be killed */
errorTreeReturn:
TTYPE (tree) = TETYPE (tree) = newCharLink ();
tree->opval.op = NULLOP;
tree->isError = 1;
return tree;
}
/*-----------------------------------------------------------------*/
/* sizeofOp - processes size of operation */
/*-----------------------------------------------------------------*/
value *
sizeofOp (sym_link * type)
{
char buff[10];
/* make sure the type is complete and sane */
checkTypeSanity(type, "(sizeof)");
/* get the size and convert it to character */
sprintf (buff, "%d", getSize (type));
/* now convert into value */
return constVal (buff);
}
#define IS_AND(ex) (ex->type == EX_OP && ex->opval.op == AND_OP )
#define IS_OR(ex) (ex->type == EX_OP && ex->opval.op == OR_OP )
#define IS_NOT(ex) (ex->type == EX_OP && ex->opval.op == '!' )
#define IS_ANDORNOT(ex) (IS_AND(ex) || IS_OR(ex) || IS_NOT(ex))
#define IS_IFX(ex) (ex->type == EX_OP && ex->opval.op == IFX )
#define IS_LT(ex) (ex->type == EX_OP && ex->opval.op == '<' )
#define IS_GT(ex) (ex->type == EX_OP && ex->opval.op == '>')
/*-----------------------------------------------------------------*/
/* backPatchLabels - change and or not operators to flow control */
/*-----------------------------------------------------------------*/
ast *
backPatchLabels (ast * tree, symbol * trueLabel, symbol * falseLabel)
{
if (!tree)
return NULL;
if (!(IS_ANDORNOT (tree)))
return tree;
/* if this an and */
if (IS_AND (tree))
{
static int localLbl = 0;
symbol *localLabel;
sprintf (buffer, "_and_%d", localLbl++);
localLabel = newSymbol (buffer, NestLevel);
tree->left = backPatchLabels (tree->left, localLabel, falseLabel);
/* if left is already a IFX then just change the if true label in that */
if (!IS_IFX (tree->left))
tree->left = newIfxNode (tree->left, localLabel, falseLabel);
tree->right = backPatchLabels (tree->right, trueLabel, falseLabel);
/* right is a IFX then just join */
if (IS_IFX (tree->right))
return newNode (NULLOP, tree->left, createLabel (localLabel, tree->right));
tree->right = createLabel (localLabel, tree->right);
tree->right = newIfxNode (tree->right, trueLabel, falseLabel);
return newNode (NULLOP, tree->left, tree->right);
}
/* if this is an or operation */
if (IS_OR (tree))
{
static int localLbl = 0;
symbol *localLabel;
sprintf (buffer, "_or_%d", localLbl++);
localLabel = newSymbol (buffer, NestLevel);
tree->left = backPatchLabels (tree->left, trueLabel, localLabel);
/* if left is already a IFX then just change the if true label in that */
if (!IS_IFX (tree->left))
tree->left = newIfxNode (tree->left, trueLabel, localLabel);
tree->right = backPatchLabels (tree->right, trueLabel, falseLabel);
/* right is a IFX then just join */
if (IS_IFX (tree->right))
return newNode (NULLOP, tree->left, createLabel (localLabel, tree->right));
tree->right = createLabel (localLabel, tree->right);
tree->right = newIfxNode (tree->right, trueLabel, falseLabel);
return newNode (NULLOP, tree->left, tree->right);
}
/* change not */
if (IS_NOT (tree))
{
int wasnot = IS_NOT (tree->left);
tree->left = backPatchLabels (tree->left, falseLabel, trueLabel);
/* if the left is already a IFX */
if (!IS_IFX (tree->left))
tree->left = newNode (IFX, tree->left, NULL);
if (wasnot)
{
tree->left->trueLabel = trueLabel;
tree->left->falseLabel = falseLabel;
}
else
{
tree->left->trueLabel = falseLabel;
tree->left->falseLabel = trueLabel;
}
return tree->left;
}
if (IS_IFX (tree))
{
tree->trueLabel = trueLabel;
tree->falseLabel = falseLabel;
}
return tree;
}
/*-----------------------------------------------------------------*/
/* createBlock - create expression tree for block */
/*-----------------------------------------------------------------*/
ast *
createBlock (symbol * decl, ast * body)
{
ast *ex;
/* if the block has nothing */
if (!body)
return NULL;
ex = newNode (BLOCK, NULL, body);
ex->values.sym = decl;
ex->right = ex->right;
ex->level++;
ex->lineno = 0;
return ex;
}
/*-----------------------------------------------------------------*/
/* createLabel - creates the expression tree for labels */
/*-----------------------------------------------------------------*/
ast *
createLabel (symbol * label, ast * stmnt)
{
symbol *csym;
char name[SDCC_NAME_MAX + 1];
ast *rValue;
/* must create fresh symbol if the symbol name */
/* exists in the symbol table, since there can */
/* be a variable with the same name as the labl */
if ((csym = findSym (SymbolTab, NULL, label->name)) &&
(csym->level == label->level))
label = newSymbol (label->name, label->level);
/* change the name before putting it in add _ */
sprintf (name, "%s", label->name);
/* put the label in the LabelSymbol table */
/* but first check if a label of the same */
/* name exists */
if ((csym = findSym (LabelTab, NULL, name)))
werror (E_DUPLICATE_LABEL, label->name);
else
addSym (LabelTab, label, name, label->level, 0, 0);
label->islbl = 1;
label->key = labelKey++;
rValue = newNode (LABEL, newAst_VALUE (symbolVal (label)), stmnt);
rValue->lineno = 0;
return rValue;
}
/*-----------------------------------------------------------------*/
/* createCase - generates the parsetree for a case statement */
/*-----------------------------------------------------------------*/
ast *
createCase (ast * swStat, ast * caseVal, ast * stmnt)
{
char caseLbl[SDCC_NAME_MAX + 1];
ast *rexpr;
value *val;
/* if the switch statement does not exist */
/* then case is out of context */
if (!swStat)
{
werror (E_CASE_CONTEXT);
return NULL;
}
caseVal = decorateType (resolveSymbols (caseVal));
/* if not a constant then error */
if (!IS_LITERAL (caseVal->ftype))
{
werror (E_CASE_CONSTANT);
return NULL;
}
/* if not a integer than error */
if (!IS_INTEGRAL (caseVal->ftype))
{
werror (E_CASE_NON_INTEGER);
return NULL;
}
/* find the end of the switch values chain */
if (!(val = swStat->values.switchVals.swVals))
swStat->values.switchVals.swVals = caseVal->opval.val;
else
{
/* also order the cases according to value */
value *pval = NULL;
int cVal = (int) floatFromVal (caseVal->opval.val);
while (val && (int) floatFromVal (val) < cVal)
{
pval = val;
val = val->next;
}
/* if we reached the end then */
if (!val)
{
pval->next = caseVal->opval.val;
}
else
{
/* we found a value greater than */
/* the current value we must add this */
/* before the value */
caseVal->opval.val->next = val;
/* if this was the first in chain */
if (swStat->values.switchVals.swVals == val)
swStat->values.switchVals.swVals =
caseVal->opval.val;
else
pval->next = caseVal->opval.val;
}
}
/* create the case label */
sprintf (caseLbl, "_case_%d_%d",
swStat->values.switchVals.swNum,
(int) floatFromVal (caseVal->opval.val));
rexpr = createLabel (newSymbol (caseLbl, 0), stmnt);
rexpr->lineno = 0;
return rexpr;
}
/*-----------------------------------------------------------------*/
/* createDefault - creates the parse tree for the default statement */
/*-----------------------------------------------------------------*/
ast *
createDefault (ast * swStat, ast * stmnt)
{
char defLbl[SDCC_NAME_MAX + 1];
/* if the switch statement does not exist */
/* then case is out of context */
if (!swStat)
{
werror (E_CASE_CONTEXT);
return NULL;
}
/* turn on the default flag */
swStat->values.switchVals.swDefault = 1;
/* create the label */
sprintf (defLbl, "_default_%d", swStat->values.switchVals.swNum);
return createLabel (newSymbol (defLbl, 0), stmnt);
}
/*-----------------------------------------------------------------*/
/* createIf - creates the parsetree for the if statement */
/*-----------------------------------------------------------------*/
ast *
createIf (ast * condAst, ast * ifBody, ast * elseBody)
{
static int Lblnum = 0;
ast *ifTree;
symbol *ifTrue, *ifFalse, *ifEnd;
/* if neither exists */
if (!elseBody && !ifBody) {
// if there are no side effects (i++, j() etc)
if (!hasSEFcalls(condAst)) {
return condAst;
}
}
/* create the labels */
sprintf (buffer, "_iffalse_%d", Lblnum);
ifFalse = newSymbol (buffer, NestLevel);
/* if no else body then end == false */
if (!elseBody)
ifEnd = ifFalse;
else
{
sprintf (buffer, "_ifend_%d", Lblnum);
ifEnd = newSymbol (buffer, NestLevel);
}
sprintf (buffer, "_iftrue_%d", Lblnum);
ifTrue = newSymbol (buffer, NestLevel);
Lblnum++;
/* attach the ifTrue label to the top of it body */
ifBody = createLabel (ifTrue, ifBody);
/* attach a goto end to the ifBody if else is present */
if (elseBody)
{
ifBody = newNode (NULLOP, ifBody,
newNode (GOTO,
newAst_VALUE (symbolVal (ifEnd)),
NULL));
/* put the elseLabel on the else body */
elseBody = createLabel (ifFalse, elseBody);
/* out the end at the end of the body */
elseBody = newNode (NULLOP,
elseBody,
createLabel (ifEnd, NULL));
}
else
{
ifBody = newNode (NULLOP, ifBody,
createLabel (ifFalse, NULL));
}
condAst = backPatchLabels (condAst, ifTrue, ifFalse);
if (IS_IFX (condAst))
ifTree = condAst;
else
ifTree = newIfxNode (condAst, ifTrue, ifFalse);
return newNode (NULLOP, ifTree,
newNode (NULLOP, ifBody, elseBody));
}
/*-----------------------------------------------------------------*/
/* createDo - creates parse tree for do */
/* _dobody_n: */
/* statements */
/* _docontinue_n: */
/* condition_expression +-> trueLabel -> _dobody_n */
/* | */
/* +-> falseLabel-> _dobreak_n */
/* _dobreak_n: */
/*-----------------------------------------------------------------*/
ast *
createDo (symbol * trueLabel, symbol * continueLabel,
symbol * falseLabel, ast * condAst, ast * doBody)
{
ast *doTree;
/* if the body does not exist then it is simple */
if (!doBody)
{
condAst = backPatchLabels (condAst, continueLabel, NULL);
doTree = (IS_IFX (condAst) ? createLabel (continueLabel, condAst)
: newNode (IFX, createLabel (continueLabel, condAst), NULL));
doTree->trueLabel = continueLabel;
doTree->falseLabel = NULL;
return doTree;
}
/* otherwise we have a body */
condAst = backPatchLabels (condAst, trueLabel, falseLabel);
/* attach the body label to the top */
doBody = createLabel (trueLabel, doBody);
/* attach the continue label to end of body */
doBody = newNode (NULLOP, doBody,
createLabel (continueLabel, NULL));
/* now put the break label at the end */
if (IS_IFX (condAst))
doTree = condAst;
else
doTree = newIfxNode (condAst, trueLabel, falseLabel);
doTree = newNode (NULLOP, doTree, createLabel (falseLabel, NULL));
/* putting it together */
return newNode (NULLOP, doBody, doTree);
}
/*-----------------------------------------------------------------*/
/* createFor - creates parse tree for 'for' statement */
/* initExpr */
/* _forcond_n: */
/* condExpr +-> trueLabel -> _forbody_n */
/* | */
/* +-> falseLabel-> _forbreak_n */
/* _forbody_n: */
/* statements */
/* _forcontinue_n: */
/* loopExpr */
/* goto _forcond_n ; */
/* _forbreak_n: */
/*-----------------------------------------------------------------*/
ast *
createFor (symbol * trueLabel, symbol * continueLabel,
symbol * falseLabel, symbol * condLabel,
ast * initExpr, ast * condExpr, ast * loopExpr,
ast * forBody)
{
ast *forTree;
/* if loopexpression not present then we can generate it */
/* the same way as a while */
if (!loopExpr)
return newNode (NULLOP, initExpr,
createWhile (trueLabel, continueLabel,
falseLabel, condExpr, forBody));
/* vanilla for statement */
condExpr = backPatchLabels (condExpr, trueLabel, falseLabel);
if (condExpr && !IS_IFX (condExpr))
condExpr = newIfxNode (condExpr, trueLabel, falseLabel);
/* attach condition label to condition */
condExpr = createLabel (condLabel, condExpr);
/* attach body label to body */
forBody = createLabel (trueLabel, forBody);
/* attach continue to forLoop expression & attach */
/* goto the forcond @ and of loopExpression */
loopExpr = createLabel (continueLabel,
newNode (NULLOP,
loopExpr,
newNode (GOTO,
newAst_VALUE (symbolVal (condLabel)),
NULL)));
/* now start putting them together */
forTree = newNode (NULLOP, initExpr, condExpr);
forTree = newNode (NULLOP, forTree, forBody);
forTree = newNode (NULLOP, forTree, loopExpr);
/* finally add the break label */
forTree = newNode (NULLOP, forTree,
createLabel (falseLabel, NULL));
return forTree;
}
/*-----------------------------------------------------------------*/
/* createWhile - creates parse tree for while statement */
/* the while statement will be created as follows */
/* */
/* _while_continue_n: */
/* condition_expression +-> trueLabel -> _while_boby_n */
/* | */
/* +-> falseLabel -> _while_break_n */
/* _while_body_n: */
/* statements */
/* goto _while_continue_n */
/* _while_break_n: */
/*-----------------------------------------------------------------*/
ast *
createWhile (symbol * trueLabel, symbol * continueLabel,
symbol * falseLabel, ast * condExpr, ast * whileBody)
{
ast *whileTree;
/* put the continue label */
condExpr = backPatchLabels (condExpr, trueLabel, falseLabel);
condExpr = createLabel (continueLabel, condExpr);
condExpr->lineno = 0;
/* put the body label in front of the body */
whileBody = createLabel (trueLabel, whileBody);
whileBody->lineno = 0;
/* put a jump to continue at the end of the body */
/* and put break label at the end of the body */
whileBody = newNode (NULLOP,
whileBody,
newNode (GOTO,
newAst_VALUE (symbolVal (continueLabel)),
createLabel (falseLabel, NULL)));
/* put it all together */
if (IS_IFX (condExpr))
whileTree = condExpr;
else
{
whileTree = newNode (IFX, condExpr, NULL);
/* put the true & false labels in place */
whileTree->trueLabel = trueLabel;
whileTree->falseLabel = falseLabel;
}
return newNode (NULLOP, whileTree, whileBody);
}
/*-----------------------------------------------------------------*/
/* optimizeGetHbit - get highest order bit of the expression */
/*-----------------------------------------------------------------*/
ast *
optimizeGetHbit (ast * tree)
{
int i, j;
/* if this is not a bit and */
if (!IS_BITAND (tree))
return tree;
/* will look for tree of the form
( expr >> ((sizeof expr) -1) ) & 1 */
if (!IS_AST_LIT_VALUE (tree->right))
return tree;
if (AST_LIT_VALUE (tree->right) != 1)
return tree;
if (!IS_RIGHT_OP (tree->left))
return tree;
if (!IS_AST_LIT_VALUE (tree->left->right))
return tree;
if ((i = (int) AST_LIT_VALUE (tree->left->right)) !=
(j = (getSize (TTYPE (tree->left->left)) * 8 - 1)))
return tree;
return decorateType (newNode (GETHBIT, tree->left->left, NULL));
}
/*-----------------------------------------------------------------*/
/* optimizeRRCRLC :- optimize for Rotate Left/Right with carry */
/*-----------------------------------------------------------------*/
ast *
optimizeRRCRLC (ast * root)
{
/* will look for trees of the form
(?expr << 1) | (?expr >> 7) or
(?expr >> 7) | (?expr << 1) will make that
into a RLC : operation ..
Will also look for
(?expr >> 1) | (?expr << 7) or
(?expr << 7) | (?expr >> 1) will make that
into a RRC operation
note : by 7 I mean (number of bits required to hold the
variable -1 ) */
/* if the root operations is not a | operation the not */
if (!IS_BITOR (root))
return root;
/* I have to think of a better way to match patterns this sucks */
/* that aside let start looking for the first case : I use a the
negative check a lot to improve the efficiency */
/* (?expr << 1) | (?expr >> 7) */
if (IS_LEFT_OP (root->left) &&
IS_RIGHT_OP (root->right))
{
if (!SPEC_USIGN (TETYPE (root->left->left)))
return root;
if (!IS_AST_LIT_VALUE (root->left->right) ||
!IS_AST_LIT_VALUE (root->right->right))
goto tryNext0;
/* make sure it is the same expression */
if (!isAstEqual (root->left->left,
root->right->left))
goto tryNext0;
if (AST_LIT_VALUE (root->left->right) != 1)
goto tryNext0;
if (AST_LIT_VALUE (root->right->right) !=
(getSize (TTYPE (root->left->left)) * 8 - 1))
goto tryNext0;
/* whew got the first case : create the AST */
return newNode (RLC, root->left->left, NULL);
}
tryNext0:
/* check for second case */
/* (?expr >> 7) | (?expr << 1) */
if (IS_LEFT_OP (root->right) &&
IS_RIGHT_OP (root->left))
{
if (!SPEC_USIGN (TETYPE (root->left->left)))
return root;
if (!IS_AST_LIT_VALUE (root->left->right) ||
!IS_AST_LIT_VALUE (root->right->right))
goto tryNext1;
/* make sure it is the same symbol */
if (!isAstEqual (root->left->left,
root->right->left))
goto tryNext1;
if (AST_LIT_VALUE (root->right->right) != 1)
goto tryNext1;
if (AST_LIT_VALUE (root->left->right) !=
(getSize (TTYPE (root->left->left)) * 8 - 1))
goto tryNext1;
/* whew got the first case : create the AST */
return newNode (RLC, root->left->left, NULL);
}
tryNext1:
/* third case for RRC */
/* (?symbol >> 1) | (?symbol << 7) */
if (IS_LEFT_OP (root->right) &&
IS_RIGHT_OP (root->left))
{
if (!SPEC_USIGN (TETYPE (root->left->left)))
return root;
if (!IS_AST_LIT_VALUE (root->left->right) ||
!IS_AST_LIT_VALUE (root->right->right))
goto tryNext2;
/* make sure it is the same symbol */
if (!isAstEqual (root->left->left,
root->right->left))
goto tryNext2;
if (AST_LIT_VALUE (root->left->right) != 1)
goto tryNext2;
if (AST_LIT_VALUE (root->right->right) !=
(getSize (TTYPE (root->left->left)) * 8 - 1))
goto tryNext2;
/* whew got the first case : create the AST */
return newNode (RRC, root->left->left, NULL);
}
tryNext2:
/* fourth and last case for now */
/* (?symbol << 7) | (?symbol >> 1) */
if (IS_RIGHT_OP (root->right) &&
IS_LEFT_OP (root->left))
{
if (!SPEC_USIGN (TETYPE (root->left->left)))
return root;
if (!IS_AST_LIT_VALUE (root->left->right) ||
!IS_AST_LIT_VALUE (root->right->right))
return root;
/* make sure it is the same symbol */
if (!isAstEqual (root->left->left,
root->right->left))
return root;
if (AST_LIT_VALUE (root->right->right) != 1)
return root;
if (AST_LIT_VALUE (root->left->right) !=
(getSize (TTYPE (root->left->left)) * 8 - 1))
return root;
/* whew got the first case : create the AST */
return newNode (RRC, root->left->left, NULL);
}
/* not found return root */
return root;
}
/*-----------------------------------------------------------------*/
/* optimizeCompare - otimizes compares for bit variables */
/*-----------------------------------------------------------------*/
ast *
optimizeCompare (ast * root)
{
ast *optExpr = NULL;
value *vleft;
value *vright;
unsigned int litValue;
/* if nothing then return nothing */
if (!root)
return NULL;
/* if not a compare op then do leaves */
if (!IS_COMPARE_OP (root))
{
root->left = optimizeCompare (root->left);
root->right = optimizeCompare (root->right);
return root;
}
/* if left & right are the same then depending
of the operation do */
if (isAstEqual (root->left, root->right))
{
switch (root->opval.op)
{
case '>':
case '<':
case NE_OP:
optExpr = newAst_VALUE (constVal ("0"));
break;
case GE_OP:
case LE_OP:
case EQ_OP:
optExpr = newAst_VALUE (constVal ("1"));
break;
}
return decorateType (optExpr);
}
vleft = (root->left->type == EX_VALUE ?
root->left->opval.val : NULL);
vright = (root->right->type == EX_VALUE ?
root->right->opval.val : NULL);
/* if left is a BITVAR in BITSPACE */
/* and right is a LITERAL then opt- */
/* imize else do nothing */
if (vleft && vright &&
IS_BITVAR (vleft->etype) &&
IN_BITSPACE (SPEC_OCLS (vleft->etype)) &&
IS_LITERAL (vright->etype))
{
/* if right side > 1 then comparison may never succeed */
if ((litValue = (int) floatFromVal (vright)) > 1)
{
werror (W_BAD_COMPARE);
goto noOptimize;
}
if (litValue)
{
switch (root->opval.op)
{
case '>': /* bit value greater than 1 cannot be */
werror (W_BAD_COMPARE);
goto noOptimize;
break;
case '<': /* bit value < 1 means 0 */
case NE_OP:
optExpr = newNode ('!', newAst_VALUE (vleft), NULL);
break;
case LE_OP: /* bit value <= 1 means no check */
optExpr = newAst_VALUE (vright);
break;
case GE_OP: /* bit value >= 1 means only check for = */
case EQ_OP:
optExpr = newAst_VALUE (vleft);
break;
}
}
else
{ /* literal is zero */
switch (root->opval.op)
{
case '<': /* bit value < 0 cannot be */
werror (W_BAD_COMPARE);
goto noOptimize;
break;
case '>': /* bit value > 0 means 1 */
case NE_OP:
optExpr = newAst_VALUE (vleft);
break;
case LE_OP: /* bit value <= 0 means no check */
case GE_OP: /* bit value >= 0 means no check */
werror (W_BAD_COMPARE);
goto noOptimize;
break;
case EQ_OP: /* bit == 0 means ! of bit */
optExpr = newNode ('!', newAst_VALUE (vleft), NULL);
break;
}
}
return decorateType (resolveSymbols (optExpr));
} /* end-of-if of BITVAR */
noOptimize:
return root;
}
/*-----------------------------------------------------------------*/
/* addSymToBlock : adds the symbol to the first block we find */
/*-----------------------------------------------------------------*/
void
addSymToBlock (symbol * sym, ast * tree)
{
/* reached end of tree or a leaf */
if (!tree || IS_AST_LINK (tree) || IS_AST_VALUE (tree))
return;
/* found a block */
if (IS_AST_OP (tree) &&
tree->opval.op == BLOCK)
{
symbol *lsym = copySymbol (sym);
lsym->next = AST_VALUES (tree, sym);
AST_VALUES (tree, sym) = lsym;
return;
}
addSymToBlock (sym, tree->left);
addSymToBlock (sym, tree->right);
}
/*-----------------------------------------------------------------*/
/* processRegParms - do processing for register parameters */
/*-----------------------------------------------------------------*/
static void
processRegParms (value * args, ast * body)
{
while (args)
{
if (IS_REGPARM (args->etype))
addSymToBlock (args->sym, body);
args = args->next;
}
}
/*-----------------------------------------------------------------*/
/* resetParmKey - resets the operandkeys for the symbols */
/*-----------------------------------------------------------------*/
DEFSETFUNC (resetParmKey)
{
symbol *sym = item;
sym->key = 0;
sym->defs = NULL;
sym->uses = NULL;
sym->remat = 0;
return 1;
}
/*-----------------------------------------------------------------*/
/* createFunction - This is the key node that calls the iCode for */
/* generating the code for a function. Note code */
/* is generated function by function, later when */
/* add inter-procedural analysis this will change */
/*-----------------------------------------------------------------*/
ast *
createFunction (symbol * name, ast * body)
{
ast *ex;
symbol *csym;
int stack = 0;
sym_link *fetype;
iCode *piCode = NULL;
if (getenv("SDCC_DEBUG_FUNCTION_POINTERS"))
fprintf (stderr, "SDCCast.c:createFunction(%s)\n", name->name);
/* if check function return 0 then some problem */
if (checkFunction (name, NULL) == 0)
return NULL;
/* create a dummy block if none exists */
if (!body)
body = newNode (BLOCK, NULL, NULL);
noLineno++;
/* check if the function name already in the symbol table */
if ((csym = findSym (SymbolTab, NULL, name->name)))
{
name = csym;
/* special case for compiler defined functions
we need to add the name to the publics list : this
actually means we are now compiling the compiler
support routine */
if (name->cdef)
{
addSet (&publics, name);
}
}
else
{
addSymChain (name);
allocVariables (name);
}
name->lastLine = yylineno;
currFunc = name;
#if 0 // jwk: this is now done in addDecl()
processFuncArgs (currFunc);
#endif
/* set the stack pointer */
/* PENDING: check this for the mcs51 */
stackPtr = -port->stack.direction * port->stack.call_overhead;
if (IFFUNC_ISISR (name->type))
stackPtr -= port->stack.direction * port->stack.isr_overhead;
if (IFFUNC_ISREENT (name->type) || options.stackAuto)
stackPtr -= port->stack.direction * port->stack.reent_overhead;
xstackPtr = -port->stack.direction * port->stack.call_overhead;
fetype = getSpec (name->type); /* get the specifier for the function */
/* if this is a reentrant function then */
if (IFFUNC_ISREENT (name->type))
reentrant++;
allocParms (FUNC_ARGS(name->type)); /* allocate the parameters */
/* do processing for parameters that are passed in registers */
processRegParms (FUNC_ARGS(name->type), body);
/* set the stack pointer */
stackPtr = 0;
xstackPtr = -1;
/* allocate & autoinit the block variables */
processBlockVars (body, &stack, ALLOCATE);
/* save the stack information */
if (options.useXstack)
name->xstack = SPEC_STAK (fetype) = stack;
else
name->stack = SPEC_STAK (fetype) = stack;
/* name needs to be mangled */
sprintf (name->rname, "%s%s", port->fun_prefix, name->name);
body = resolveSymbols (body); /* resolve the symbols */
body = decorateType (body); /* propagateType & do semantic checks */
ex = newAst_VALUE (symbolVal (name)); /* create name */
ex = newNode (FUNCTION, ex, body);
ex->values.args = FUNC_ARGS(name->type);
ex->decorated=1;
if (options.dump_tree) PA(ex);
if (fatalError)
{
werror (E_FUNC_NO_CODE, name->name);
goto skipall;
}
/* create the node & generate intermediate code */
GcurMemmap = code;
codeOutFile = code->oFile;
piCode = iCodeFromAst (ex);
if (fatalError)
{
werror (E_FUNC_NO_CODE, name->name);
goto skipall;
}
eBBlockFromiCode (piCode);
/* if there are any statics then do them */
if (staticAutos)
{
GcurMemmap = statsg;
codeOutFile = statsg->oFile;
eBBlockFromiCode (iCodeFromAst (decorateType (resolveSymbols (staticAutos))));
staticAutos = NULL;
}
skipall:
/* dealloc the block variables */
processBlockVars (body, &stack, DEALLOCATE);
/* deallocate paramaters */
deallocParms (FUNC_ARGS(name->type));
if (IFFUNC_ISREENT (name->type))
reentrant--;
/* we are done freeup memory & cleanup */
noLineno--;
labelKey = 1;
name->key = 0;
FUNC_HASBODY(name->type) = 1;
addSet (&operKeyReset, name);
applyToSet (operKeyReset, resetParmKey);
if (options.debug)
cdbStructBlock (1, cdbFile);
cleanUpLevel (LabelTab, 0);
cleanUpBlock (StructTab, 1);
cleanUpBlock (TypedefTab, 1);
xstack->syms = NULL;
istack->syms = NULL;
return NULL;
}
#define INDENT(x,f) { int i ; for (i=0;i < x; i++) fprintf(f," "); }
/*-----------------------------------------------------------------*/
/* ast_print : prints the ast (for debugging purposes) */
/*-----------------------------------------------------------------*/
void ast_print (ast * tree, FILE *outfile, int indent)
{
if (!tree) return ;
/* can print only decorated trees */
if (!tree->decorated) return;
/* if any child is an error | this one is an error do nothing */
if (tree->isError ||
(tree->left && tree->left->isError) ||
(tree->right && tree->right->isError)) {
fprintf(outfile,"ERROR_NODE(%p)\n",tree);
}
/* print the line */
/* if not block & function */
if (tree->type == EX_OP &&
(tree->opval.op != FUNCTION &&
tree->opval.op != BLOCK &&
tree->opval.op != NULLOP)) {
}
if (tree->opval.op == FUNCTION) {
int arg=0;
value *args=FUNC_ARGS(tree->left->opval.val->type);
fprintf(outfile,"FUNCTION (%s=%p) type (",
tree->left->opval.val->name, tree);
printTypeChain (tree->ftype,outfile);
fprintf(outfile,") args (");
do {
if (arg) {
fprintf (outfile, ", ");
}
printTypeChain (args ? args->type : NULL, outfile);
arg++;
args= args ? args->next : NULL;
} while (args);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent);
ast_print(tree->right,outfile,indent);
return ;
}
if (tree->opval.op == BLOCK) {
symbol *decls = tree->values.sym;
INDENT(indent,outfile);
fprintf(outfile,"{\n");
while (decls) {
INDENT(indent+4,outfile);
fprintf(outfile,"DECLARE SYMBOL (%s=%p) type (",
decls->name, decls);
printTypeChain(decls->type,outfile);
fprintf(outfile,")\n");
decls = decls->next;
}
ast_print(tree->right,outfile,indent+4);
INDENT(indent,outfile);
fprintf(outfile,"}\n");
return;
}
if (tree->opval.op == NULLOP) {
fprintf(outfile,"\n");
ast_print(tree->left,outfile,indent);
fprintf(outfile,"\n");
ast_print(tree->right,outfile,indent);
return ;
}
INDENT(indent,outfile);
/*------------------------------------------------------------------*/
/*----------------------------*/
/* leaf has been reached */
/*----------------------------*/
/* if this is of type value */
/* just get the type */
if (tree->type == EX_VALUE) {
if (IS_LITERAL (tree->opval.val->etype)) {
fprintf(outfile,"CONSTANT (%p) value = %d, 0x%x, %g", tree,
(int) floatFromVal(tree->opval.val),
(int) floatFromVal(tree->opval.val),
floatFromVal(tree->opval.val));
} else if (tree->opval.val->sym) {
/* if the undefined flag is set then give error message */
if (tree->opval.val->sym->undefined) {
fprintf(outfile,"UNDEFINED SYMBOL ");
} else {
fprintf(outfile,"SYMBOL ");
}
fprintf(outfile,"(%s=%p)",
tree->opval.val->sym->name,tree);
}
if (tree->ftype) {
fprintf(outfile," type (");
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
} else {
fprintf(outfile,"\n");
}
return ;
}
/* if type link for the case of cast */
if (tree->type == EX_LINK) {
fprintf(outfile,"TYPENODE (%p) type = (",tree);
printTypeChain(tree->opval.lnk,outfile);
fprintf(outfile,")\n");
return ;
}
/* depending on type of operator do */
switch (tree->opval.op) {
/*------------------------------------------------------------------*/
/*----------------------------*/
/* array node */
/*----------------------------*/
case '[':
fprintf(outfile,"ARRAY_OP (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* struct/union */
/*----------------------------*/
case '.':
fprintf(outfile,"STRUCT_ACCESS (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* struct/union pointer */
/*----------------------------*/
case PTR_OP:
fprintf(outfile,"PTR_ACCESS (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* ++/-- operation */
/*----------------------------*/
case INC_OP: /* incerement operator unary so left only */
fprintf(outfile,"INC_OP (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
return ;
case DEC_OP:
fprintf(outfile,"DEC_OP (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* bitwise and */
/*----------------------------*/
case '&':
if (tree->right) {
fprintf(outfile,"& (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
} else {
fprintf(outfile,"ADDRESS_OF (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
}
return ;
/*----------------------------*/
/* bitwise or */
/*----------------------------*/
case '|':
fprintf(outfile,"OR (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* bitwise xor */
/*----------------------------*/
case '^':
fprintf(outfile,"XOR (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* division */
/*----------------------------*/
case '/':
fprintf(outfile,"DIV (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* modulus */
/*----------------------------*/
case '%':
fprintf(outfile,"MOD (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* address dereference */
/*----------------------------*/
case '*': /* can be unary : if right is null then unary operation */
if (!tree->right) {
fprintf(outfile,"DEREF (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
return ;
}
/*------------------------------------------------------------------*/
/*----------------------------*/
/* multiplication */
/*----------------------------*/
fprintf(outfile,"MULT (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* unary '+' operator */
/*----------------------------*/
case '+':
/* if unary plus */
if (!tree->right) {
fprintf(outfile,"UPLUS (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
} else {
/*------------------------------------------------------------------*/
/*----------------------------*/
/* addition */
/*----------------------------*/
fprintf(outfile,"ADD (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
}
return;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* unary '-' */
/*----------------------------*/
case '-': /* can be unary */
if (!tree->right) {
fprintf(outfile,"UMINUS (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
} else {
/*------------------------------------------------------------------*/
/*----------------------------*/
/* subtraction */
/*----------------------------*/
fprintf(outfile,"SUB (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
}
return;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* compliment */
/*----------------------------*/
case '~':
fprintf(outfile,"COMPL (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* not */
/*----------------------------*/
case '!':
fprintf(outfile,"NOT (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* shift */
/*----------------------------*/
case RRC:
fprintf(outfile,"RRC (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
return ;
case RLC:
fprintf(outfile,"RLC (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
return ;
case GETHBIT:
fprintf(outfile,"GETHBIT (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
return ;
case LEFT_OP:
fprintf(outfile,"LEFT_SHIFT (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
case RIGHT_OP:
fprintf(outfile,"RIGHT_SHIFT (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* casting */
/*----------------------------*/
case CAST: /* change the type */
fprintf(outfile,"CAST (%p) from type (",tree);
printTypeChain(tree->right->ftype,outfile);
fprintf(outfile,") to type (");
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->right,outfile,indent+4);
return ;
case AND_OP:
fprintf(outfile,"ANDAND (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
case OR_OP:
fprintf(outfile,"OROR (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* comparison operators */
/*----------------------------*/
case '>':
fprintf(outfile,"GT(>) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
case '<':
fprintf(outfile,"LT(<) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
case LE_OP:
fprintf(outfile,"LE(<=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
case GE_OP:
fprintf(outfile,"GE(>=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
case EQ_OP:
fprintf(outfile,"EQ(==) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
case NE_OP:
fprintf(outfile,"NE(!=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
/*------------------------------------------------------------------*/
/*----------------------------*/
/* sizeof */
/*----------------------------*/
case SIZEOF: /* evaluate wihout code generation */
fprintf(outfile,"SIZEOF %d\n",(getSize (tree->right->ftype)));
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* conditional operator '?' */
/*----------------------------*/
case '?':
fprintf(outfile,"QUEST(?) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
case ':':
fprintf(outfile,"COLON(:) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* assignment operators */
/*----------------------------*/
case MUL_ASSIGN:
fprintf(outfile,"MULASS(*=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
case DIV_ASSIGN:
fprintf(outfile,"DIVASS(/=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
case AND_ASSIGN:
fprintf(outfile,"ANDASS(&=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
case OR_ASSIGN:
fprintf(outfile,"ORASS(*=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
case XOR_ASSIGN:
fprintf(outfile,"XORASS(*=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
case RIGHT_ASSIGN:
fprintf(outfile,"RSHFTASS(>>=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
case LEFT_ASSIGN:
fprintf(outfile,"LSHFTASS(*=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* -= operator */
/*----------------------------*/
case SUB_ASSIGN:
fprintf(outfile,"SUBASS(-=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* += operator */
/*----------------------------*/
case ADD_ASSIGN:
fprintf(outfile,"ADDASS(+=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* straight assignemnt */
/*----------------------------*/
case '=':
fprintf(outfile,"ASSIGN(=) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* comma operator */
/*----------------------------*/
case ',':
fprintf(outfile,"COMMA(,) (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* function call */
/*----------------------------*/
case CALL:
case PCALL:
fprintf(outfile,"CALL (%p) type (",tree);
printTypeChain(tree->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent+4);
return;
case PARAM:
fprintf(outfile,"PARMS\n");
ast_print(tree->left,outfile,indent+4);
if (tree->right && !IS_AST_PARAM(tree->right)) {
ast_print(tree->right,outfile,indent+4);
}
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* return statement */
/*----------------------------*/
case RETURN:
fprintf(outfile,"RETURN (%p) type (",tree);
printTypeChain(tree->right->ftype,outfile);
fprintf(outfile,")\n");
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* label statement */
/*----------------------------*/
case LABEL :
fprintf(outfile,"LABEL (%p)",tree);
ast_print(tree->left,outfile,indent+4);
ast_print(tree->right,outfile,indent);
return;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* switch statement */
/*----------------------------*/
case SWITCH:
{
value *val;
fprintf(outfile,"SWITCH (%p) ",tree);
ast_print(tree->left,outfile,0);
for (val = tree->values.switchVals.swVals; val ; val = val->next) {
INDENT(indent+4,outfile);
fprintf(outfile,"CASE 0x%x GOTO _case_%d_%d\n",
(int) floatFromVal(val),
tree->values.switchVals.swNum,
(int) floatFromVal(val));
}
ast_print(tree->right,outfile,indent);
}
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* ifx Statement */
/*----------------------------*/
case IFX:
fprintf(outfile,"IF (%p) \n",tree);
ast_print(tree->left,outfile,indent+4);
if (tree->trueLabel) {
INDENT(indent,outfile);
fprintf(outfile,"NE(!=) 0 goto %s\n",tree->trueLabel->name);
}
if (tree->falseLabel) {
INDENT(indent,outfile);
fprintf(outfile,"EQ(==) 0 goto %s\n",tree->falseLabel->name);
}
ast_print(tree->right,outfile,indent+4);
return ;
/*------------------------------------------------------------------*/
/*----------------------------*/
/* for Statement */
/*----------------------------*/
case FOR:
fprintf(outfile,"FOR (%p) \n",tree);
if (AST_FOR( tree, initExpr)) {
INDENT(indent+4,outfile);
fprintf(outfile,"INIT EXPR ");
ast_print(AST_FOR(tree, initExpr),outfile,indent+4);
}
if (AST_FOR( tree, condExpr)) {
INDENT(indent+4,outfile);
fprintf(outfile,"COND EXPR ");
ast_print(AST_FOR(tree, condExpr),outfile,indent+4);
}
if (AST_FOR( tree, loopExpr)) {
INDENT(indent+4,outfile);
fprintf(outfile,"LOOP EXPR ");
ast_print(AST_FOR(tree, loopExpr),outfile,indent+4);
}
fprintf(outfile,"FOR LOOP BODY \n");
ast_print(tree->left,outfile,indent+4);
return ;
default:
return ;
}
}
void PA(ast *t)
{
ast_print(t,stdout,0);
}