gbdk-releases/sdcc/doc/sdccman.lyx
2015-01-10 16:25:09 +01:00

8630 lines
171 KiB
Plaintext

#LyX 1.1 created this file. For more info see http://www.lyx.org/
\lyxformat 218
\textclass article
\language english
\inputencoding default
\fontscheme pslatex
\graphics default
\paperfontsize default
\spacing single
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language swedish
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle fancy
\layout Title
SDCC Compiler User Guide
\layout Standard
\begin_inset LatexCommand \tableofcontents{}
\end_inset
\layout Section
Introduction
\layout Subsection
About SDCC
\layout Standard
\series bold
SDCC
\series default
is a Freeware, retargettable, optimizing ANSI-C compiler by
\series bold
Sandeep Dutta
\series default
designed for 8 bit Microprocessors.
The current version targets Intel MCS51 based Microprocessors(8051,8052,
etc), Zilog Z80 based MCUs, and the Dallas DS80C390 variant.
It can be retargetted for other microprocessors, support for PIC, AVR and
186 is under development.
The entire source code for the compiler is distributed under GPL.
SDCC uses ASXXXX & ASLINK, a Freeware, retargettable assembler & linker.
SDCC has extensive language extensions suitable for utilizing various microcont
rollers and underlying hardware effectively.
\newline
\newline
In addition to the MCU specific optimizations SDCC also does a host of standard
optimizations like:
\layout Itemize
global sub expression elimination,
\layout Itemize
loop optimizations (loop invariant, strength reduction of induction variables
and loop reversing),
\layout Itemize
constant folding & propagation,
\layout Itemize
copy propagation,
\layout Itemize
dead code elimination
\layout Itemize
jumptables for
\emph on
switch
\emph default
statements.
\layout Standard
For the back-end SDCC uses a global register allocation scheme which should
be well suited for other 8 bit MCUs.
\newline
\newline
The peep hole optimizer uses a rule based substitution mechanism which is
MCU independent.
\newline
\newline
Supported data-types are:
\layout Itemize
char (8 bits, 1 byte),
\layout Itemize
short and int (16 bits, 2 bytes),
\layout Itemize
long (32 bit, 4 bytes)
\layout Itemize
float (4 byte IEEE).
\layout Standard
The compiler also allows
\emph on
inline assembler code
\emph default
to be embedded anywhere in a function.
In addition, routines developed in assembly can also be called.
\newline
\newline
SDCC also provides an option (--cyclomatic) to report the relative complexity
of a function.
These functions can then be further optimized, or hand coded in assembly
if needed.
\newline
\newline
SDCC also comes with a companion source level debugger SDCDB, the debugger
currently uses ucSim a freeware simulator for 8051 and other micro-controllers.
\newline
\newline
The latest version can be downloaded from
\begin_inset LatexCommand \htmlurl{http://sdcc.sourceforge.net/}
\end_inset
\series bold
.
\layout Subsection
Open Source
\layout Standard
All packages used in this compiler system are
\emph on
opensource
\emph default
and
\emph on
freeware
\emph default
; source code for all the sub-packages (asxxxx assembler/linker, pre-processor)
is distributed with the package.
This documentation is maintained using a freeware word processor (LyX).
\layout Standard
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
In other words, you are welcome to use, share and improve this program.
You are forbidden to forbid anyone else to use, share and improve what
you give them.
Help stamp out software-hoarding!
\layout Subsection
Typographic conventions
\layout Standard
Throughout this manual, we will use the following convention.
Commands you have to type in are printed in
\family sans
\series bold
"sans serif"
\series default
.
\family default
Code samples are printed in
\family typewriter
typewriter font.
\family default
Interesting items and new terms are printed in
\emph on
italicised type.
\layout Subsection
Compatibility with previous versions
\layout Standard
This version has numerous bug fixes compared with the previous version.
But we also introduced some incompatibilities with older versions.
Not just for the fun of it, but to make the compiler more stable, efficient
and ANSI compliant.
\newline
\layout Itemize
short is now equivalent to int (16 bits), it used to be equivalent to char
(8 bits)
\layout Itemize
the default directory where include, library and documention files are stored
is no in /usr/local/share
\layout Itemize
char type parameters to vararg functions are casted to int unless explicitly
casted, e.g.:
\newline
\family typewriter
\SpecialChar ~
\SpecialChar ~
char a=3;
\newline
\SpecialChar ~
\SpecialChar ~
printf ("%d %c
\backslash
n", a, (char)a);
\family default
\newline
will push a as an int and as a char resp.
\layout Itemize
option --regextend has been removed
\layout Itemize
option --noreparms has been removed
\layout Standard
\emph on
<pending: more incompatibilities?>
\layout Subsection
System Requirements
\layout Standard
What do you need before you start installation of SDCC? A computer, and
a desire to compute.
The preferred method of installation is to compile SDCC from source using
GNU gcc and make.
For Windows some pre-compiled binary distributions are available for your
convenience.
You should have some experience with command line tools and compiler use.
\layout Subsection
Other Resources
\layout Standard
The SDCC home page at
\begin_inset LatexCommand \htmlurl{http://sdcc.sourceforge.net/}
\end_inset
is a great place to find distribution sets.
You can also find links to the user mailing lists that offer help or discuss
SDCC with other SDCC users.
Web links to other SDCC related sites can also be found here.
This document can be found in the DOC directory of the source package as
a text or HTML file.
Some of the other tools (simulator and assembler) included with SDCC contain
their own documentation and can be found in the source distribution.
If you want the latest unreleased software, the complete source package
is available directly by anonymous CVS on cvs.sdcc.sourceforge.net.
\layout Subsection
Wishes for the future
\layout Standard
There are (and always will be) some things that could be done.
Here are some I can think of:
\newline
\layout Standard
\family sans
\series bold
sdcc -c --model-large -o large _atoi.c
\family default
\series default
(where large could be a different basename or a directory)
\newline
\layout Standard
\family typewriter
char KernelFunction3(char p) at 0x340;
\newline
\newline
\family default
If you can think of some more, please send them to the list.
\newline
\newline
\emph on
<pending: And then of course a proper index-table
\begin_inset LatexCommand \index{index}
\end_inset
>
\layout Section
Installation
\layout Subsection
Linux/Unix Installation
\layout Enumerate
\series medium
Download the source package, it will be named something like sdcc-2.x.x.tgz.
\layout Enumerate
\series medium
Bring up a command line terminal, such as xterm.
\layout Enumerate
\series medium
Unpack the file using a command like:
\family sans
\series bold
"tar -xzf sdcc-2.x.x.tgz
\family default
\series default
"
\series medium
, this will create a sub-directory called sdcc with all of the sources.
\layout Enumerate
Change directory into the main SDCC directory, for example type:
\family sans
\series bold
"cd sdcc
\series default
".
\layout Enumerate
\series medium
Type
\family sans
\series bold
"./configure
\family default
\series default
".
This configures the package for compilation on your system.
\layout Enumerate
\series medium
Type
\family sans
\series bold
"make
\family default
\series default
"
\series medium
.
\series default
All of the source packages will compile, this can take a while.
\layout Enumerate
\series medium
Type
\family sans
\series bold
"make install"
\family default
\series default
as root
\series medium
.
\series default
This copies the binary executables, the include files, the libraries and
the documentation to the install directories.
\layout Subsection
Windows Installation
\layout Standard
\emph on
<pending: is this complete? where is borland, mingw>
\newline
\newline
\emph default
For installation under Windows you first need to pick between a pre-compiled
binary package, or installing the source package along with the Cygwin
package.
The binary package is the quickest to install, while the Cygwin package
includes all of the open source power tools used to compile the complete
SDCC source package in the Windows environment.
If you are not familiar with the Unix command line environment, you may
want to read the section on additional information for Windows users prior
to your initial installation.
\layout Subsubsection
Windows Install Using a Binary Package
\layout Enumerate
Download the binary package and unpack it using your favorite unpacking
tool (gunzip, WinZip, etc).
This should unpack to a group of sub-directories.
An example directory structure after unpacking is: c:
\backslash
usr
\backslash
local
\backslash
bin for the executables, c:
\backslash
usr
\backslash
local
\backslash
share
\backslash
sdcc
\backslash
include and c:
\backslash
usr
\backslash
local
\backslash
share
\backslash
sdcc
\backslash
lib for the include and libraries.
\layout Enumerate
Adjust your environment PATH to include the location of the bin directory.
For example, make a setsdcc.bat file with the following: set PATH=c:
\backslash
usr
\backslash
local
\backslash
bin;%PATH%
\layout Enumerate
When you compile with sdcc, you may need to specify the location of the
lib and include folders.
For example, sdcc -I c:
\backslash
usr
\backslash
local
\backslash
share
\backslash
sdcc
\backslash
include -L c:
\backslash
usr
\backslash
local
\backslash
share
\backslash
sdcc
\backslash
lib
\backslash
small test.c
\layout Subsubsection
Windows Install Using Cygwin
\layout Enumerate
\series medium
Download and install the cygwin package from the redhat site
\series default
\begin_inset LatexCommand \htmlurl{http://sources.redhat.com/cygwin/}
\end_inset
\series medium
.
Currently, this involved downloading a small install program which then
automates downloading and installing
\series default
selected parts of
\series medium
the package
\series default
(a large 80M byte sized dowload for the whole thing)
\series medium
.
\series default
\layout Enumerate
\series medium
Bring up a
\series default
Unix/Bash
\series medium
command line terminal from the Cygwin menu.
\layout Enumerate
\series medium
Follow the instructions in the preceding Linux/Unix installation section.
\layout Subsection
Testing out the SDCC Compiler
\layout Standard
The first thing you should do after installing your SDCC compiler is to
see if it runs.
Type
\family sans
\series bold
"sdcc --version"
\family default
\series default
at the prompt, and the program should run and tell you the version.
If it doesn't run, or gives a message about not finding sdcc program, then
you need to check over your installation.
Make sure that the sdcc bin directory is in your executable search path
defined by the PATH environment setting (see the Trouble-shooting section
for suggestions).
Make sure that the sdcc program is in the bin folder, if not perhaps something
did not install correctly.
\newline
\newline
\series medium
SDCC binaries are commonly installed in a directory arrangement like this:
\series default
\newline
\newline
\begin_inset Tabular
<lyxtabular version="2" rows="3" columns="2">
<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
<column alignment="left" valignment="top" leftline="true" rightline="false" width="" special="">
<column alignment="left" valignment="top" leftline="true" rightline="true" width="" special="">
<row topline="true" bottomline="true" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
/
\series medium
usr/local/bin
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
\series medium
Holds executables(sdcc, s51, aslink,
\series default
...
\series medium
)
\end_inset
</cell>
</row>
<row topline="true" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
/
\series medium
usr/local/share/sdcc/lib
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
\series medium
Holds common C
\series default
libraries
\end_inset
</cell>
</row>
<row topline="true" bottomline="true" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
/
\series medium
usr/local/share/sdcc/include
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
\series medium
Holds common C header files
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\newline
\newline
\series medium
Make sure the compiler works on a very simple example.
Type in the following test.c program using your favorite editor:
\series default
\newline
\emph on
\newline
\family typewriter
\emph default
int test(int t) {
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
return t+3;
\newline
}
\family default
\newline
\emph on
\newline
\series medium
\emph default
Compile this using the following command:
\family sans
\series bold
"sdcc -c test.c".
\family default
\series default
\series medium
If all goes well, the compiler will generate a test.asm and test.rel file.
Congratulations, you've just compiled your first program with SDCC.
We used the -c option to tell SDCC not to link the generated code, just
to keep things simple for this step.
\series default
\newline
\newline
\series medium
The next step is to try it with the linker.
Type in
\family sans
\series bold
"sdcc test.c
\family default
\series default
"
\series medium
.
If all goes well the compiler will link with the libraries and produce
a test.ihx output file.
If this step fails
\series default
\series medium
(no test.ihx, and the linker generates warnings), then the problem is most
likely that sdcc cannot find the
\series default
/
\series medium
usr/local/share/sdcc/lib directory
\series default
\series medium
(see the Install trouble-shooting section for suggestions).
\series default
\newline
\newline
\series medium
The final test is to ensure sdcc can use the
\series default
standard
\series medium
header files and libraries.
Edit test.c and change it to the following:
\series default
\newline
\newline
#include <string.h>
\newline
main() {
\newline
\family typewriter
char str1[10];
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
strcpy(str1, "testing");
\newline
}
\newline
\newline
\family default
\series medium
Compile this by typing
\family sans
\series bold
"sdcc test.c"
\family default
\series medium
.
This should generate a test.ihx output file, and it should give no warnings
such as not finding the string.h file.
If it cannot find the string.h file, then the problem is that sdcc cannot
find the /usr/local/share/sdcc/include directory
\series default
\series medium
(see the Install trouble-shooting section for suggestions).
\layout Subsection
Install Trouble-shooting
\layout Subsubsection
SDCC cannot find libraries or header files.
\layout Standard
The default installation assumes the libraries and header files are located
at
\begin_inset Quotes eld
\end_inset
/usr/local/share/sdcc/lib
\begin_inset Quotes erd
\end_inset
and
\begin_inset Quotes eld
\end_inset
/usr/local/share/sdcc/include
\begin_inset Quotes erd
\end_inset
.
An alternative is to specify these locations as compiler options like this:
\family sans
\series bold
"sdcc\SpecialChar ~
-L\SpecialChar ~
/usr/local/sdcc/lib/small\SpecialChar ~
-I\SpecialChar ~
/usr/local/sdcc/include\SpecialChar ~
test.c"
\family default
\series default
.
\layout Subsubsection
SDCC does not compile correctly.
\layout Standard
A thing to try is starting from scratch by unpacking the .tgz source package
again in an empty directory.
Confure it again and build like:
\newline
\newline
\family sans
\series bold
make 2&>1 | tee make.log
\family default
\series default
\newline
\newline
After this you can review the make.log file to locate the problem.
Or a relevant part of this be attached to an email that could be helpful
when requesting help from the mailing list.
\layout Subsubsection
What the
\begin_inset Quotes sld
\end_inset
./configure
\begin_inset Quotes srd
\end_inset
does
\layout Standard
The
\begin_inset Quotes sld
\end_inset
./configure
\begin_inset Quotes srd
\end_inset
command is a script that analyzes your system and performs some configuration
to ensure the source package compiles on your system.
It will take a few minutes to run, and will compile a few tests to determine
what compiler features are installed.
\layout Subsubsection
What the
\begin_inset Quotes sld
\end_inset
make
\begin_inset Quotes srd
\end_inset
does.
\layout Standard
This runs the GNU make tool, which automatically compiles all the source
packages into the final installed binary executables.
\layout Subsubsection
What the
\begin_inset Quotes sld
\end_inset
make install
\begin_inset Quotes erd
\end_inset
command does.
\layout Standard
This will install the compiler, other executables and libraries in to the
appropriate system directories.
The default is to copy the executables to /usr/local/bin and the libraries
and header files to /usr/local/share/sdcc/lib and /usr/local/share/sdcc/include.
\layout Subsection
Additional Information for Windows Users
\layout Standard
\emph on
<pending: is this up to date?>
\newline
\newline
\emph default
The standard method of installing on a Unix system involves compiling the
source package.
This is easily done under Unix, but under Windows it can be a more difficult
process.
The Cygwin is a large package to download, and the compilation runs considerabl
y slower under Windows due to the overhead of the Cygwin tool set.
An alternative is to install a pre-compiled Windows binary package.
There are various trade-offs between each of these methods.
\layout Standard
The Cygwin package allows a Windows user to run a Unix command line interface
(bash shell) and also implements a Unix like file system on top of Windows.
Included are many of the famous GNU software development tools which can
augment the SDCC compiler.This is great if you have some experience with
Unix command line tools and file system conventions, if not you may find
it easier to start by installing a binary Windows package.
The binary packages work with the Windows file system conventions.
\layout Subsubsection
Getting started with Cygwin
\layout Standard
SDCC is typically distributed as a tarred/gzipped file (.tgz).
This is a packed file similar to a .zip file.
Cygwin includes the tools you will need to unpack the SDCC distribution
(tar and gzip).
To unpack it, simply follow the instructions under the Linux/Unix install
section.
Before you do this you need to learn how to start a cygwin shell and some
of the basic commands used to move files, change directory, run commands
and so on.
The change directory command is
\family sans
\series bold
\begin_inset Quotes eld
\end_inset
cd
\begin_inset Quotes erd
\end_inset
\family default
\series default
, the move command is
\family sans
\series bold
\begin_inset Quotes eld
\end_inset
mv
\begin_inset Quotes erd
\end_inset
\family default
\series default
.
To print the current working directory, type
\family sans
\series bold
\begin_inset Quotes eld
\end_inset
pwd
\begin_inset Quotes erd
\end_inset
\family default
\series default
.
To make a directory, use
\family sans
\series bold
\begin_inset Quotes eld
\end_inset
mkdir
\begin_inset Quotes erd
\end_inset
\family default
\series default
.
\layout Standard
There are some basic differences between Unix and Windows file systems you
should understand.
When you type in directory paths, Unix and the Cygwin bash prompt uses
forward slashes '/' between directories while Windows traditionally uses
'
\backslash
' backward slashes.
So when you work at the Cygwin bash prompt, you will need to use the forward
'/' slashes.
Unix does not have a concept of drive letters, such as
\begin_inset Quotes eld
\end_inset
c:
\begin_inset Quotes eld
\end_inset
, instead all files systems attach and appear as directories.
\layout Subsubsection
Running SDCC as Native Compiled Executables
\layout Standard
If you use the pre-compiled binaries, the install directories for the libraries
and header files may need to be specified on the sdcc command line like
this:
\family sans
\series bold
"sdcc -L c:
\backslash
usr
\backslash
local
\backslash
sdcc
\backslash
lib
\backslash
small -I c:
\backslash
usr
\backslash
local
\backslash
sdcc
\backslash
include test.c"
\family default
\series default
if you are running outside of a Unix bash shell.
\layout Standard
If you have successfully installed and compiled SDCC with the Cygwin package,
it is possible to compile into native .exe files by using the additional
makefiles included for this purpose.
For example, with the Borland 32-bit compiler you would run
\family sans
\series bold
"make -f Makefile.bcc"
\family default
\series default
.
A command line version of the Borland 32-bit compiler can be downloaded
from the Inprise web site.
\layout Subsection
SDCC on Other Platforms
\layout Itemize
\series bold
FreeBSD and other non-GNU Unixes
\series default
- Make sure the GNU make is installed as the default make tool.
\layout Itemize
SDCC has been ported to run under a variety of operating systems and processors.
If you can run GNU GCC/make then chances are good SDCC can be compiled
and run on your system.
\layout Subsection
Advanced Install Options
\layout Standard
The
\begin_inset Quotes eld
\end_inset
configure
\begin_inset Quotes erd
\end_inset
command has several options.
The most commonly used option is --prefix=<directory name>, where <directory
name> is the final location for the sdcc executables and libraries, (default
location is /usr/local).
The installation process will create the following directory structure
under the <directory name> specified (if they do not already exist).
\newline
\newline
bin/ - binary exectables (add to PATH environment variable)
\newline
bin/share/
\newline
bin/share/sdcc/include/ - include header files
\newline
bin/share/sdcc/lib/
\newline
bin/share/sdcc/lib/small/ - Object & library files for small model library
\newline
bin/share/sdcc/lib/large/ - Object & library files for large model library
\newline
bin/share/sdcc/lib/ds390/ - Object & library files forDS80C390 library
\newline
\newline
The command
\family sans
\series bold
\begin_inset Quotes sld
\end_inset
./configure --prefix=/usr/local
\begin_inset Quotes erd
\end_inset
\family default
\series default
will configure the compiler to be installed in directory /usr/local.
\layout Subsection
Components of SDCC
\layout Standard
SDCC is not just a compiler, but a collection of tools by various developers.
These include linkers, assemblers, simulators and other components.
Here is a summary of some of the components.
Note that the included simulator and assembler have separate documentation
which you can find in the source package in their respective directories.
As SDCC grows to include support for other processors, other packages from
various developers are included and may have their own sets of documentation.
\newline
\newline
You might want to look at the files which are installed in <installdir>.
At the time of this writing, we find the following programs:
\newline
\newline
In <installdir>/bin:
\layout Itemize
sdcc - The compiler.
\layout Itemize
sdcpp - The C preprocessor.
\layout Itemize
asx8051 - The assembler for 8051 type processors.
\layout Itemize
as-z80
\series bold
,
\series default
as-gbz80 - The Z80 and GameBoy Z80 assemblers.
\layout Itemize
aslink -The linker for 8051 type processors.
\layout Itemize
link-z80
\series bold
,
\series default
link-gbz80 - The Z80 and GameBoy Z80 linkers.
\layout Itemize
s51 - The ucSim 8051 simulator.
\layout Itemize
sdcdb - The source debugger.
\layout Itemize
packihx - A tool to pack Intel hex files.
\layout Standard
In <installdir>/share/sdcc/include
\layout Itemize
the include files
\layout Standard
In <installdir>/share/sdcc/lib
\layout Itemize
the sources of the runtime library and the subdirs small large and ds390
with the precompiled relocatables.
\layout Standard
In <installdir>/share/sdcc/doc
\layout Itemize
the documentation
\layout Standard
As development for other processors proceeds, this list will expand to include
executables to support processors like AVR, PIC, etc.
\layout Subsubsection
sdcc - The Compiler
\layout Standard
This is the actual compiler, it in turn uses the c-preprocessor and invokes
the assembler and linkage editor.
\layout Subsubsection
sdcpp (C-Preprocessor)
\layout Standard
The preprocessor is a modified version of the GNU preprocessor.
The C preprocessor is used to pull in #include sources, process #ifdef
statements, #defines and so on.
\layout Subsubsection
asx8051, as-z80, as-gbz80, aslink, link-z80, link-gbz80 (The Assemblers
and Linkage Editors)
\layout Standard
This is retargettable assembler & linkage editor, it was developed by Alan
Baldwin.
John Hartman created the version for 8051, and I (Sandeep) have made some
enhancements and bug fixes for it to work properly with the SDCC.
\layout Subsubsection
s51 - Simulator
\layout Standard
S51 is a freeware, opensource simulator developed by Daniel Drotos (
\begin_inset LatexCommand \url{mailto:drdani@mazsola.iit.uni-miskolc.hu}
\end_inset
).
The simulator is built as part of the build process.
For more information visit Daniel's website at:
\begin_inset LatexCommand \url{http://mazsola.iit.uni-miskolc.hu/~drdani/embedded/s51}
\end_inset
.
\layout Subsubsection
sdcdb - Source Level Debugger
\layout Standard
Sdcdb is the companion source level debugger.
The current version of the debugger uses Daniel's Simulator S51, but can
be easily changed to use other simulators.
\layout Section
Using SDCC
\layout Subsection
Compiling
\layout Subsubsection
Single Source File Projects
\layout Standard
For single source file 8051 projects the process is very simple.
Compile your programs with the following command
\family sans
\series bold
"sdcc sourcefile.c".
\family default
\series default
This will compile, assemble and link your source file.
Output files are as follows
\newline
\newline
sourcefile.asm - Assembler source file created by the compiler
\newline
sourcefile.lst - Assembler listing file created by the Assembler
\newline
sourcefile.rst - Assembler listing file updated with linkedit information,
created by linkage editor
\newline
sourcefile.sym - symbol listing for the sourcefile, created by the assembler
\newline
sourcefile.rel - Object file created by the assembler, input to Linkage editor
\newline
sourcefile.map - The memory map for the load module, created by the Linker
\newline
sourcefile.ihx - The load module in Intel hex format (you can select the
Motorola S19 format with --out-fmt-s19)
\newline
sourcefile.cdb - An optional file (with --debug) containing debug information
\newline
\layout Subsubsection
Projects with Multiple Source Files
\layout Standard
SDCC can compile only ONE file at a time.
Let us for example assume that you have a project containing the following
files:
\newline
\newline
foo1.c (contains some functions)
\newline
foo2.c (contains some more functions)
\newline
foomain.c (contains more functions and the function main)
\newline
\size footnotesize
\newline
\size default
The first two files will need to be compiled separately with the commands:
\size footnotesize
\size default
\newline
\newline
\family sans
\series bold
sdcc\SpecialChar ~
-c\SpecialChar ~
foo1.c
\family default
\series default
\size footnotesize
\newline
\family sans
\series bold
\size default
sdcc\SpecialChar ~
-c\SpecialChar ~
foo2.c
\family default
\series default
\newline
\newline
Then compile the source file containing the
\emph on
main()
\emph default
function and link the files together with the following command:
\newline
\newline
\family sans
\series bold
sdcc\SpecialChar ~
foomain.c\SpecialChar ~
foo1.rel\SpecialChar ~
foo2.rel
\family default
\series default
\newline
\newline
Alternatively,
\emph on
foomain.c
\emph default
can be separately compiled as well:
\family sans
\series bold
\newline
\newline
sdcc\SpecialChar ~
-c\SpecialChar ~
foomain.c
\newline
sdcc foomain.rel foo1.rel foo2.rel
\newline
\newline
\family default
\series default
The file containing the
\emph on
main()
\emph default
function
\emph on
\emph default
\noun on
must
\noun default
be the
\noun on
first
\noun default
file specified in the command line, since the linkage editor processes
file in the order they are presented to it.
\layout Subsubsection
Projects with Additional Libraries
\layout Standard
Some reusable routines may be compiled into a library, see the documentation
for the assembler and linkage editor (which are in <installdir>/share/sdcc/doc)
for how to create a
\emph on
.lib
\emph default
library file.
Libraries created in this manner can be included in the command line.
Make sure you include the -L <library-path> option to tell the linker where
to look for these files if they are not in the current directory.
Here is an example, assuming you have the source file
\emph on
foomain.c
\emph default
and a library
\emph on
foolib.lib
\emph default
in the directory
\emph on
mylib
\emph default
(if that is not the same as your current project):
\newline
\newline
\family sans
\series bold
sdcc foomain.c foolib.lib -L mylib
\newline
\newline
\family default
\series default
Note here that
\emph on
mylib
\emph default
must be an absolute path name.
\newline
\newline
The most efficient way to use libraries is to keep seperate modules in seperate
source files.
The lib file now should name all the modules.rel files.
For an example see the standard library file
\emph on
libsdcc.lib
\emph default
in the directory <installdir>/share/lib/small.
\layout Subsection
Command Line Options
\layout Subsubsection
Processor Selection Options
\layout List
\labelwidthstring 00.00.0000
\series bold
-mmcs51
\series default
Generate code for the MCS51 (8051) family of processors.
This is the default processor target.
\layout List
\labelwidthstring 00.00.0000
\series bold
-mds390
\series default
Generate code for the DS80C390 processor.
\layout List
\labelwidthstring 00.00.0000
\series bold
-mz80
\series default
Generate code for the Z80 family of processors.
\layout List
\labelwidthstring 00.00.0000
\series bold
-mgbz80
\series default
Generate code for the GameBoy Z80 processor.
\layout List
\labelwidthstring 00.00.0000
\series bold
-mavr
\series default
Generate code for the Atmel AVR processor(In development, not complete).
\layout List
\labelwidthstring 00.00.0000
\series bold
-mpic14
\series default
Generate code for the PIC 14-bit processors(In development, not complete).
\layout List
\labelwidthstring 00.00.0000
\series bold
-mtlcs900h
\series default
Generate code for the Toshiba TLCS-900H processor(In development, not complete).
\layout Subsubsection
Preprocessor Options
\layout List
\labelwidthstring 00.00.0000
\series bold
-I<path>
\series default
The additional location where the pre processor will look for <..h> or
\begin_inset Quotes eld
\end_inset
..h
\begin_inset Quotes erd
\end_inset
files.
\layout List
\labelwidthstring 00.00.0000
\series bold
-D<macro[=value]>
\series default
Command line definition of macros.
Passed to the pre processor.
\layout List
\labelwidthstring 00.00.0000
\series bold
-M
\series default
Tell the preprocessor to output a rule suitable for make describing the
dependencies of each object file.
For each source file, the preprocessor outputs one make-rule whose target
is the object file name for that source file and whose dependencies are
all the files `#include'd in it.
This rule may be a single line or may be continued with `
\backslash
'-newline if it is long.
The list of rules is printed on standard output instead of the preprocessed
C program.
`-M' implies `-E'.
\layout List
\labelwidthstring 00.00.0000
\series bold
-C
\series default
Tell the preprocessor not to discard comments.
Used with the `-E' option.
\layout List
\labelwidthstring 00.00.0000
\series bold
-MM
\size large
\bar under
\series default
\size default
\bar default
Like `-M' but the output mentions only the user header files included with
`#include
\begin_inset Quotes eld
\end_inset
file"'.
System header files included with `#include <file>' are omitted.
\layout List
\labelwidthstring 00.00.0000
\series bold
-Aquestion(answer)
\series default
Assert the answer answer for question, in case it is tested with a preprocessor
conditional such as `#if #question(answer)'.
`-A-' disables the standard assertions that normally describe the target
machine.
\layout List
\labelwidthstring 00.00.0000
\series bold
-Aquestion
\series default
(answer) Assert the answer answer for question, in case it is tested with
a preprocessor conditional such as `#if #question(answer)'.
`-A-' disables the standard assertions that normally describe the target
machine.
\layout List
\labelwidthstring 00.00.0000
\series bold
-Umacro
\series default
Undefine macro macro.
`-U' options are evaluated after all `-D' options, but before any `-include'
and `-imacros' options.
\layout List
\labelwidthstring 00.00.0000
\series bold
-dM
\series default
Tell the preprocessor to output only a list of the macro definitions that
are in effect at the end of preprocessing.
Used with the `-E' option.
\layout List
\labelwidthstring 00.00.0000
\series bold
-dD
\series default
Tell the preprocessor to pass all macro definitions into the output, in
their proper sequence in the rest of the output.
\layout List
\labelwidthstring 00.00.0000
\series bold
-dN
\size large
\bar under
\series default
\size default
\bar default
Like `-dD' except that the macro arguments and contents are omitted.
Only `#define name' is included in the output.
\layout Subsubsection
Linker Options
\layout List
\labelwidthstring 00.00.0000
\series bold
-L\SpecialChar ~
--lib-path
\bar under
\series default
\bar default
<absolute path to additional libraries> This option is passed to the linkage
editor's additional libraries search path.
The path name must be absolute.
Additional library files may be specified in the command line.
See section Compiling programs for more details.
\layout List
\labelwidthstring 00.00.0000
\series bold
--xram-loc
\series default
<Value> The start location of the external ram, default value is 0.
The value entered can be in Hexadecimal or Decimal format, e.g.: --xram-loc
0x8000 or --xram-loc 32768.
\layout List
\labelwidthstring 00.00.0000
\series bold
--code-loc
\series default
<Value> The start location of the code segment, default value 0.
Note when this option is used the interrupt vector table is also relocated
to the given address.
The value entered can be in Hexadecimal or Decimal format, e.g.: --code-loc
0x8000 or --code-loc 32768.
\layout List
\labelwidthstring 00.00.0000
\series bold
--stack-loc
\series default
<Value> The initial value of the stack pointer.
The default value of the stack pointer is 0x07 if only register bank 0
is used, if other register banks are used then the stack pointer is initialized
to the location above the highest register bank used.
eg.
if register banks 1 & 2 are used the stack pointer will default to location
0x18.
The value entered can be in Hexadecimal or Decimal format, eg.
--stack-loc 0x20 or --stack-loc 32.
If all four register banks are used the stack will be placed after the
data segment (equivalent to --stack-after-data)
\layout List
\labelwidthstring 00.00.0000
\series bold
--stack-after-data
\series default
This option will cause the stack to be located in the internal ram after
the data segment.
\layout List
\labelwidthstring 00.00.0000
\series bold
--data-loc
\series default
<Value> The start location of the internal ram data segment, the default
value is 0x30.The value entered can be in Hexadecimal or Decimal format,
eg.
--data-loc 0x20 or --data-loc 32.
\layout List
\labelwidthstring 00.00.0000
\series bold
--idata-loc
\series default
<Value> The start location of the indirectly addressable internal ram, default
value is 0x80.
The value entered can be in Hexadecimal or Decimal format, eg.
--idata-loc 0x88 or --idata-loc 136.
\layout List
\labelwidthstring 00.00.0000
\series bold
--out-fmt-ihx
\bar under
\series default
\bar default
The linker output (final object code) is in Intel Hex format.
(This is the default option).
\layout List
\labelwidthstring 00.00.0000
\series bold
--out-fmt-s19
\bar under
\series default
\bar default
The linker output (final object code) is in Motorola S19 format.
\layout Subsubsection
MCS51 Options
\layout List
\labelwidthstring 00.00.0000
\series bold
--model-large
\series default
Generate code for Large model programs see section Memory Models for more
details.
If this option is used all source files in the project should be compiled
with this option.
In addition the standard library routines are compiled with small model,
they will need to be recompiled.
\layout List
\labelwidthstring 00.00.0000
\series bold
--model-small
\series default
\size large
\emph on
\size default
\emph default
Generate code for Small Model programs see section Memory Models for more
details.
This is the default model.
\layout Subsubsection
DS390 Options
\layout List
\labelwidthstring 00.00.0000
\series bold
--model-flat24
\series default
\size large
\emph on
\size default
\emph default
Generate 24-bit flat mode code.
This is the one and only that the ds390 code generator supports right now
and is default when using
\emph on
-mds390
\emph default
.
See section Memory Models for more details.
\layout List
\labelwidthstring 00.00.0000
\series bold
--stack-10bit
\series default
Generate code for the 10 bit stack mode of the Dallas DS80C390 part.
This is the one and only that the ds390 code generator supports right now
and is default when using
\emph on
-mds390
\emph default
.
In this mode, the stack is located in the lower 1K of the internal RAM,
which is mapped to 0x400000.
Note that the support is incomplete, since it still uses a single byte
as the stack pointer.
This means that only the lower 256 bytes of the potential 1K stack space
will actually be used.
However, this does allow you to reclaim the precious 256 bytes of low RAM
for use for the DATA and IDATA segments.
The compiler will not generate any code to put the processor into 10 bit
stack mode.
It is important to ensure that the processor is in this mode before calling
any re-entrant functions compiled with this option.
In principle, this should work with the
\emph on
--stack-auto
\emph default
option, but that has not been tested.
It is incompatible with the
\emph on
--xstack
\emph default
option.
It also only makes sense if the processor is in 24 bit contiguous addressing
mode (see the
\emph on
--model-flat24 option
\emph default
).
\layout Subsubsection
Optimization Options
\layout List
\labelwidthstring 00.00.0000
\series bold
--nogcse
\series default
Will not do global subexpression elimination, this option may be used when
the compiler creates undesirably large stack/data spaces to store compiler
temporaries.
A warning message will be generated when this happens and the compiler
will indicate the number of extra bytes it allocated.
It recommended that this option NOT be used, #pragma\SpecialChar ~
NOGCSE can be used
to turn off global subexpression elimination for a given function only.
\layout List
\labelwidthstring 00.00.0000
\series bold
--noinvariant
\series default
Will not do loop invariant optimizations, this may be turned off for reasons
explained for the previous option.
For more details of loop optimizations performed see section Loop Invariants.It
recommended that this option NOT be used, #pragma\SpecialChar ~
NOINVARIANT can be used
to turn off invariant optimizations for a given function only.
\layout List
\labelwidthstring 00.00.0000
\series bold
--noinduction
\series default
Will not do loop induction optimizations, see section strength reduction
for more details.It is recommended that this option is NOT used, #pragma\SpecialChar ~
NOINDUCT
ION can be used to turn off induction optimizations for a given function
only.
\layout List
\labelwidthstring 00.00.0000
\series bold
--nojtbound
\size large
\bar under
\series default
\size default
\bar default
Will not generate boundary condition check when switch statements are implement
ed using jump-tables.
See section Switch Statements for more details.
It is recommended that this option is NOT used, #pragma\SpecialChar ~
NOJTBOUND can be
used to turn off boundary checking for jump tables for a given function
only.
\layout List
\labelwidthstring 00.00.0000
\series bold
--noloopreverse
\series default
\size large
\size default
Will not do loop reversal optimization.
\layout Subsubsection
Other Options
\layout List
\labelwidthstring 00.00.0000
\series bold
-c\SpecialChar ~
--compile-only
\series default
will compile and assemble the source, but will not call the linkage editor.
\layout List
\labelwidthstring 00.00.0000
\series bold
-E
\series default
Run only the C preprocessor.
Preprocess all the C source files specified and output the results to standard
output.
\layout List
\labelwidthstring 00.00.0000
\series bold
--stack-auto
\series default
\size large
\emph on
\size default
\emph default
All functions in the source file will be compiled as
\emph on
reentrant
\emph default
, i.e.
the parameters and local variables will be allocated on the stack.
see section Parameters and Local Variables for more details.
If this option is used all source files in the project should be compiled
with this option.
\layout List
\labelwidthstring 00.00.0000
\series bold
--xstack
\series default
Uses a pseudo stack in the first 256 bytes in the external ram for allocating
variables and passing parameters.
See section on external stack for more details.
\layout List
\labelwidthstring 00.00.0000
\series bold
--callee-saves function1[,function2][,function3]....
\series default
The compiler by default uses a caller saves convention for register saving
across function calls, however this can cause unneccessary register pushing
& popping when calling small functions from larger functions.
This option can be used to switch the register saving convention for the
function names specified.
The compiler will not save registers when calling these functions, no extra
code will be generated at the entry & exit for these functions to save
& restore the registers used by these functions, this can SUBSTANTIALLY
reduce code & improve run time performance of the generated code.
In the future the compiler (with interprocedural analysis) will be able
to determine the appropriate scheme to use for each function call.
DO NOT use this option for built-in functions such as _muluint..., if this
option is used for a library function the appropriate library function
needs to be recompiled with the same option.
If the project consists of multiple source files then all the source file
should be compiled with the same --callee-saves option string.
Also see #pragma\SpecialChar ~
CALLEE-SAVES.
\layout List
\labelwidthstring 00.00.0000
\series bold
--debug
\bar under
\series default
\bar default
When this option is used the compiler will generate debug information, that
can be used with the SDCDB.
The debug information is collected in a file with .cdb extension.
For more information see documentation for SDCDB.
\layout List
\labelwidthstring 00.00.0000
\series bold
\emph on
--regextend
\bar under
\series default
\bar default
This option is obsolete and isn't supported anymore.
\layout List
\labelwidthstring 00.00.0000
\series bold
\emph on
--noregparms
\series default
This option is obsolete and isn't supported anymore.
\layout List
\labelwidthstring 00.00.0000
\series bold
--peep-file
\series default
<filename> This option can be used to use additional rules to be used by
the peep hole optimizer.
See section Peep Hole optimizations for details on how to write these rules.
\layout List
\labelwidthstring 00.00.0000
\series bold
-S
\size large
\bar under
\series default
\size default
\bar default
Stop after the stage of compilation proper; do not assemble.
The output is an assembler code file for the input file specified.
\layout List
\labelwidthstring 00.00.0000
\series bold
-Wa_asmOption[,asmOption]
\series default
...
Pass the asmOption to the assembler.
\layout List
\labelwidthstring 00.00.0000
\series bold
-Wl_linkOption[,linkOption]
\series default
...
Pass the linkOption to the linker.
\layout List
\labelwidthstring 00.00.0000
\series bold
--int-long-reent
\series default
\size large
\size default
Integer (16 bit) and long (32 bit) libraries have been compiled as reentrant.
Note by default these libraries are compiled as non-reentrant.
See section Installation for more details.
\layout List
\labelwidthstring 00.00.0000
\series bold
--cyclomatic
\bar under
\series default
\bar default
This option will cause the compiler to generate an information message for
each function in the source file.
The message contains some
\emph on
important
\emph default
information about the function.
The number of edges and nodes the compiler detected in the control flow
graph of the function, and most importantly the
\emph on
cyclomatic complexity
\emph default
see section on Cyclomatic Complexity for more details.
\layout List
\labelwidthstring 00.00.0000
\series bold
--float-reent
\bar under
\series default
\bar default
Floating point library is compiled as reentrant.See section Installation
for more details.
\layout List
\labelwidthstring 00.00.0000
\series bold
--nooverlay
\series default
The compiler will not overlay parameters and local variables of any function,
see section Parameters and local variables for more details.
\layout List
\labelwidthstring 00.00.0000
\series bold
--main-return
\series default
This option can be used when the code generated is called by a monitor
program.
The compiler will generate a 'ret' upon return from the 'main' function.
The default option is to lock up i.e.
generate a 'ljmp '.
\layout List
\labelwidthstring 00.00.0000
\series bold
--no-peep
\series default
Disable peep-hole optimization.
\layout List
\labelwidthstring 00.00.0000
\series bold
--peep-asm
\series default
Pass the inline assembler code through the peep hole optimizer.
This can cause unexpected changes to inline assembler code, please go through
the peephole optimizer rules defined in the source file tree '<target>/peeph.def
' before using this option.
\layout List
\labelwidthstring 00.00.0000
\series bold
--iram-size
\series default
<Value> Causes the linker to check if the interal ram usage is within limits
of the given value.
\layout List
\labelwidthstring 00.00.0000
\series bold
--nostdincl
\series default
This will prevent the compiler from passing on the default include path
to the preprocessor.
\layout List
\labelwidthstring 00.00.0000
\series bold
--nostdlib
\series default
This will prevent the compiler from passing on the default library path
to the linker.
\layout List
\labelwidthstring 00.00.0000
\series bold
--verbose
\series default
Shows the various actions the compiler is performing.
\layout List
\labelwidthstring 00.00.0000
\series bold
-V
\series default
Shows the actual commands the compiler is executing.
\layout Subsubsection
Intermediate Dump Options
\layout Standard
The following options are provided for the purpose of retargetting and debugging
the compiler.
These provided a means to dump the intermediate code (iCode) generated
by the compiler in human readable form at various stages of the compilation
process.
\layout List
\labelwidthstring 00.00.0000
\series bold
--dumpraw
\series default
This option will cause the compiler to dump the intermediate code into
a file of named
\emph on
<source filename>.dumpraw
\emph default
just after the intermediate code has been generated for a function, i.e.
before any optimizations are done.
The basic blocks at this stage ordered in the depth first number, so they
may not be in sequence of execution.
\layout List
\labelwidthstring 00.00.0000
\series bold
--dumpgcse
\series default
Will create a dump of iCode's, after global subexpression elimination,
into a file named
\emph on
<source filename>.dumpgcse.
\layout List
\labelwidthstring 00.00.0000
\series bold
--dumpdeadcode
\series default
Will create a dump of iCode's, after deadcode elimination, into a file
named
\emph on
<source filename>.dumpdeadcode.
\layout List
\labelwidthstring 00.00.0000
\series bold
--dumploop
\series default
\size large
\size default
Will create a dump of iCode's, after loop optimizations, into a file named
\emph on
<source filename>.dumploop.
\layout List
\labelwidthstring 00.00.0000
\series bold
--dumprange
\series default
\size large
\size default
Will create a dump of iCode's, after live range analysis, into a file named
\emph on
<source filename>.dumprange.
\layout List
\labelwidthstring 00.00.0000
\series bold
--dumlrange
\series default
Will dump the life ranges for all symbols.
\layout List
\labelwidthstring 00.00.0000
\series bold
--dumpregassign
\bar under
\series default
\bar default
Will create a dump of iCode's, after register assignment, into a file named
\emph on
<source filename>.dumprassgn.
\layout List
\labelwidthstring 00.00.0000
\series bold
--dumplrange
\series default
Will create a dump of the live ranges of iTemp's
\layout List
\labelwidthstring 00.00.0000
\series bold
--dumpall
\size large
\bar under
\series default
\size default
\bar default
Will cause all the above mentioned dumps to be created.
\layout Subsection
MCS51/DS390 Storage Class Language Extensions
\layout Standard
In addition to the ANSI storage classes SDCC allows the following MCS51
specific storage classes.
\layout Subsubsection
xdata
\layout Standard
Variables declared with this storage class will be placed in the extern
RAM.
This is the
\series bold
default
\series default
storage class for Large Memory model, e.g.:
\newline
\newline
\family typewriter
xdata unsigned char xduc;
\layout Subsubsection
data
\layout Standard
This is the
\series bold
default
\series default
storage class for Small Memory model.
Variables declared with this storage class will be allocated in the internal
RAM, e.g.:
\newline
\newline
\family typewriter
data int iramdata;
\layout Subsubsection
idata
\layout Standard
Variables declared with this storage class will be allocated into the indirectly
addressable portion of the internal ram of a 8051, e.g.:
\newline
\newline
\family typewriter
idata int idi;
\layout Subsubsection
bit
\layout Standard
This is a data-type and a storage class specifier.
When a variable is declared as a bit, it is allocated into the bit addressable
memory of 8051, e.g.:
\newline
\newline
\family typewriter
bit iFlag;
\layout Subsubsection
sfr / sbit
\layout Standard
Like the bit keyword,
\emph on
sfr / sbit
\emph default
signifies both a data-type and storage class, they are used to describe
the special function registers and special bit variables of a 8051, eg:
\newline
\newline
\family typewriter
sfr at 0x80 P0; /* special function register P0 at location 0x80 */
\newline
sbit at 0xd7 CY; /* CY (Carry Flag) */
\layout Subsection
Pointers
\layout Standard
SDCC allows (via language extensions) pointers to explicitly point to any
of the memory spaces of the 8051.
In addition to the explicit pointers, the compiler also allows a
\emph on
_generic
\emph default
class of pointers which can be used to point to any of the memory spaces.
\newline
\newline
Pointer declaration examples:
\newline
\size small
\newline
\family typewriter
\size default
/* pointer physically in xternal ram pointing to object in internal ram
*/
\newline
data unsigned char * xdata p;
\newline
\newline
/* pointer physically in code rom pointing to data in xdata space */
\newline
xdata unsigned char * code p;
\newline
\newline
/* pointer physically in code space pointing to data in code space */
\newline
code unsigned char * code p;
\newline
\newline
/* the folowing is a generic pointer physically located in xdata space */
\newline
char * xdata p;
\family default
\size small
\newline
\newline
\size default
Well you get the idea.
\newline
\newline
\emph on
For compatibility with the previous version of the compiler, the following
syntax for pointer declaration is still supported but will disappear int
the near future.
\newline
\newline
\family typewriter
unsigned char _xdata *ucxdp; /* pointer to data in external ram */
\newline
unsigned char _data \SpecialChar ~
*ucdp ; /* pointer to data in internal ram */
\newline
unsigned char _code \SpecialChar ~
*uccp ; /* pointer to data in R/O code space */
\newline
unsigned char _idata *uccp; \SpecialChar ~
/* pointer to upper 128 bytes of ram */
\family default
\size small
\emph default
\newline
\newline
\size default
All unqualified pointers are treated as 3-byte (4-byte for the ds390)
\emph on
generic
\emph default
pointers.
These type of pointers can also to be explicitly declared.
\newline
\newline
\family typewriter
unsigned char _generic *ucgp;
\family default
\size small
\newline
\newline
\size default
The highest order byte of the
\emph on
generic
\emph default
pointers contains the data space information.
Assembler support routines are called whenever data is stored or retrieved
using
\emph on
generic
\emph default
pointers.
These are useful for developing reusable library routines.
Explicitly specifying the pointer type will generate the most efficient
code.
Pointers declared using a mixture of OLD and NEW style could have unpredictable
results.
\layout Subsection
Parameters & Local Variables
\layout Standard
Automatic (local) variables and parameters to functions can either be placed
on the stack or in data-space.
The default action of the compiler is to place these variables in the internal
RAM (for small model) or external RAM (for Large model).
This in fact makes them
\emph on
static
\emph default
so by default functions are non-reentrant.
\layout Standard
They can be placed on the stack either by using the
\emph on
--stack-auto
\emph default
compiler option or by using the
\emph on
reentrant
\emph default
keyword in the function declaration, e.g.:
\newline
\size small
\newline
\family typewriter
\size default
unsigned char foo(char i) reentrant
\newline
{
\newline
...
\newline
}
\newline
\family default
\newline
Since stack space on 8051 is limited, the
\emph on
reentrant
\emph default
keyword or the
\emph on
--stack-auto
\emph default
option should be used sparingly.
Note that the reentrant keyword just means that the parameters & local
variables will be allocated to the stack, it
\emph on
does not
\emph default
mean that the function is register bank independent.
\newline
\newline
Local variables can be assigned storage classes and absolute addresses,
e.g.:
\newline
\newline
\family typewriter
unsigned char foo() {
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
xdata unsigned char i;
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
bit bvar;
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
data at 0x31 unsiged char j;
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
...
\newline
}
\newline
\newline
\family default
In the above example the variable
\emph on
i
\emph default
will be allocated in the external ram,
\emph on
bvar
\emph default
in bit addressable space and
\emph on
j
\emph default
in internal ram.
When compiled with
\emph on
--stack-auto
\emph default
or when a function is declared as
\emph on
reentrant
\emph default
this can only be done for static variables.
\layout Standard
Parameters however are not allowed any storage class, (storage classes for
parameters will be ignored), their allocation is governed by the memory
model in use, and the reentrancy options.
\layout Subsection
Overlaying
\layout Standard
For non-reentrant functions SDCC will try to reduce internal ram space usage
by overlaying parameters and local variables of a function (if possible).
Parameters and local variables of a function will be allocated to an overlayabl
e segment if the function has
\emph on
no other function calls and the function is non-reentrant and the memory
model is small.
\emph default
If an explicit storage class is specified for a local variable, it will
NOT be overlayed.
\layout Standard
Note that the compiler (not the linkage editor) makes the decision for overlayin
g the data items.
Functions that are called from an interrupt service routine should be preceded
by a #pragma\SpecialChar ~
NOOVERLAY if they are not reentrant.
\layout Standard
Also note that the compiler does not do any processing of inline assembler
code, so the compiler might incorrectly assign local variables and parameters
of a function into the overlay segment if the inline assembler code calls
other c-functions that might use the overlay.
In that case the #pragma\SpecialChar ~
NOOVERLAY should be used.
\layout Standard
Parameters and Local variables of functions that contain 16 or 32 bit multiplica
tion or division will NOT be overlayed since these are implemented using
external functions, e.g.:
\newline
\newline
\family typewriter
#pragma SAVE
\newline
#pragma NOOVERLAY
\newline
void set_error(unsigned char errcd)
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
P3 = errcd;
\newline
}
\newline
#pragma RESTORE
\newline
\newline
void some_isr () interrupt 2 using 1
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
...
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
set_error(10);
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
...
\newline
}
\newline
\newline
\family default
In the above example the parameter
\emph on
errcd
\emph default
for the function
\emph on
set_error
\emph default
would be assigned to the overlayable segment if the #pragma\SpecialChar ~
NOOVERLAY was
not present, this could cause unpredictable runtime behavior when called
from an ISR.
The #pragma\SpecialChar ~
NOOVERLAY ensures that the parameters and local variables for
the function are NOT overlayed.
\layout Subsection
Interrupt Service Routines
\layout Standard
SDCC allows interrupt service routines to be coded in C, with some extended
keywords.
\newline
\newline
\family typewriter
void timer_isr (void) interrupt 2 using 1
\newline
{
\newline
..
\newline
}
\newline
\newline
\family default
The number following the
\emph on
interrupt
\emph default
keyword is the interrupt number this routine will service.
The compiler will insert a call to this routine in the interrupt vector
table for the interrupt number specified.
The
\emph on
using
\emph default
keyword is used to tell the compiler to use the specified register bank
(8051 specific) when generating code for this function.
Note that when some function is called from an interrupt service routine
it should be preceded by a #pragma\SpecialChar ~
NOOVERLAY if it is not reentrant.
A special note here, int (16 bit) and long (32 bit) integer division, multiplic
ation & modulus operations are implemented using external support routines
developed in ANSI-C, if an interrupt service routine needs to do any of
these operations then the support routines (as mentioned in a following
section) will have to be recompiled using the
\emph on
--stack-auto
\emph default
option and the source file will need to be compiled using the
\emph on
--int-long-ren
\emph default
t compiler option.
\layout Standard
If you have multiple source files in your project, interrupt service routines
can be present in any of them, but a prototype of the isr MUST be present
or included in the file that contains the function
\emph on
main
\emph default
.
\layout Standard
Interrupt Numbers and the corresponding address & descriptions for the Standard
8051 are listed below.
SDCC will automatically adjust the interrupt vector table to the maximum
interrupt number specified.
\newline
\layout Standard
\begin_inset Tabular
<lyxtabular version="2" rows="6" columns="3">
<features rotate="false" islongtable="false" endhead="0" endfirsthead="0" endfoot="0" endlastfoot="0">
<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
<column alignment="center" valignment="top" leftline="true" rightline="false" width="" special="">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="" special="">
<row topline="true" bottomline="true" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Interrupt #
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Description
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Vector Address
\end_inset
</cell>
</row>
<row topline="true" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
0
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
External 0
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
0x0003
\end_inset
</cell>
</row>
<row topline="true" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
1
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Timer 0
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
0x000B
\end_inset
</cell>
</row>
<row topline="true" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
2
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
External 1
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
0x0013
\end_inset
</cell>
</row>
<row topline="true" bottomline="false" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
3
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Timer 1
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
0x001B
\end_inset
</cell>
</row>
<row topline="true" bottomline="true" newpage="false">
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
4
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="false" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
Serial
\end_inset
</cell>
<cell multicolumn="0" alignment="center" valignment="top" topline="true" bottomline="false" leftline="true" rightline="true" rotate="false" usebox="none" width="" special="">
\begin_inset Text
\layout Standard
0x0023
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\newline
\newline
If the interrupt service routine is defined without
\emph on
using
\emph default
a register bank or with register bank 0 (using 0), the compiler will save
the registers used by itself on the stack upon entry and restore them at
exit, however if such an interrupt service routine calls another function
then the entire register bank will be saved on the stack.
This scheme may be advantageous for small interrupt service routines which
have low register usage.
\layout Standard
If the interrupt service routine is defined to be using a specific register
bank then only
\emph on
a, b & dptr
\emph default
are save and restored, if such an interrupt service routine calls another
function (using another register bank) then the entire register bank of
the called function will be saved on the stack.
This scheme is recommended for larger interrupt service routines.
\layout Standard
Calling other functions from an interrupt service routine is not recommended,
avoid it if possible.
\newline
\newline
Also see the _naked modifier.
\layout Subsection
Critical Functions
\layout Standard
A special keyword may be associated with a function declaring it as
\emph on
critical
\emph default
.
SDCC will generate code to disable all interrupts upon entry to a critical
function and enable them back before returning.
Note that nesting critical functions may cause unpredictable results.
\newline
\size small
\newline
\family typewriter
\size default
int foo () critical
\newline
{
\newline
...
\newline
...
\newline
}
\newline
\family default
\newline
The critical attribute maybe used with other attributes like
\emph on
reentrant.
\layout Subsection
Naked Functions
\layout Standard
A special keyword may be associated with a function declaring it as
\emph on
_naked.
\emph default
The
\emph on
_naked
\emph default
function modifier attribute prevents the compiler from generating prologue
and epilogue code for that function.
This means that the user is entirely responsible for such things as saving
any registers that may need to be preserved, selecting the proper register
bank, generating the
\emph on
return
\emph default
instruction at the end, etc.
Practically, this means that the contents of the function must be written
in inline assembler.
This is particularly useful for interrupt functions, which can have a large
(and often unnecessary) prologue/epilogue.
For example, compare the code generated by these two functions:
\newline
\newline
\family typewriter
data unsigned char counter;
\newline
void simpleInterrupt(void) interrupt 1
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
counter++;
\newline
}
\newline
\newline
void nakedInterrupt(void) interrupt 2 _naked
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_asm
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
inc\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_counter
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
reti\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
; MUST explicitly include ret in _naked function.
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_endasm;
\newline
}
\family default
\newline
\newline
For an 8051 target, the generated simpleInterrupt looks like:
\newline
\newline
\family typewriter
_simpleIterrupt:
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
push\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
acc
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
push\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
b
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
push\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
dpl
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
push\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
dph
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
push\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
psw
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
psw,#0x00
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
inc\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_counter
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
pop\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
psw
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
pop\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
dph
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
pop\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
dpl
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
pop\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
b
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
pop\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
acc
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
reti
\family default
\newline
\newline
whereas nakedInterrupt looks like:
\newline
\newline
\family typewriter
_nakedInterrupt:
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
inc\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_counter
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
reti\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
; MUST explicitly include ret(i) in _naked function.
\family default
\newline
\newline
While there is nothing preventing you from writing C code inside a _naked
function, there are many ways to shoot yourself in the foot doing this,
and is is recommended that you stick to inline assembler.
\layout Subsection
Functions using private banks
\layout Standard
The
\emph on
using
\emph default
attribute (which tells the compiler to use a register bank other than the
default bank zero) should only be applied to
\emph on
interrupt
\emph default
functions (see note 1 below).
This will in most circumstances make the generated ISR code more efficient
since it will not have to save registers on the stack.
\layout Standard
The
\emph on
using
\emph default
attribute will have no effect on the generated code for a
\emph on
non-interrupt
\emph default
function (but may occasionally be useful anyway
\begin_float footnote
\layout Standard
possible exception: if a function is called ONLY from 'interrupt' functions
using a particular bank, it can be declared with the same 'using' attribute
as the calling 'interrupt' functions.
For instance, if you have several ISRs using bank one, and all of them
call memcpy(), it might make sense to create a specialized version of memcpy()
'using 1', since this would prevent the ISR from having to save bank zero
to the stack on entry and switch to bank zero before calling the function
\end_float
).
\newline
\emph on
(pending: I don't think this has been done yet)
\layout Standard
An
\emph on
interrupt
\emph default
function using a non-zero bank will assume that it can trash that register
bank, and will not save it.
Since high-priority interrupts can interrupt low-priority ones on the 8051
and friends, this means that if a high-priority ISR
\emph on
using
\emph default
a particular bank occurs while processing a low-priority ISR
\emph on
using
\emph default
the same bank, terrible and bad things can happen.
To prevent this, no single register bank should be
\emph on
used
\emph default
by both a high priority and a low priority ISR.
This is probably most easily done by having all high priority ISRs use
one bank and all low priority ISRs use another.
If you have an ISR which can change priority at runtime, you're on your
own: I suggest using the default bank zero and taking the small performance
hit.
\layout Standard
It is most efficient if your ISR calls no other functions.
If your ISR must call other functions, it is most efficient if those functions
use the same bank as the ISR (see note 1 below); the next best is if the
called functions use bank zero.
It is very inefficient to call a function using a different, non-zero bank
from an ISR.
\layout Subsection
Absolute Addressing
\layout Standard
Data items can be assigned an absolute address with the
\emph on
at <address>
\emph default
keyword, in addition to a storage class, e.g.:
\newline
\newline
\family typewriter
xdata at 0x8000 unsigned char PORTA_8255 ;
\newline
\family default
\newline
In the above example the PORTA_8255 will be allocated to the location 0x8000
of the external ram.
Note that this feature is provided to give the programmer access to
\emph on
memory mapped
\emph default
devices attached to the controller.
The compiler does not actually reserve any space for variables declared
in this way (they are implemented with an equate in the assembler).
Thus it is left to the programmer to make sure there are no overlaps with
other variables that are declared without the absolute address.
The assembler listing file (.lst) and the linker output files (.rst) and
(.map) are a good places to look for such overlaps.
\newline
\newline
Absolute address can be specified for variables in all storage classes,
e.g.:
\newline
\newline
\family typewriter
bit at 0x02 bvar;
\newline
\newline
\family default
The above example will allocate the variable at offset 0x02 in the bit-addressab
le space.
There is no real advantage to assigning absolute addresses to variables
in this manner, unless you want strict control over all the variables allocated.
\layout Subsection
Startup Code
\layout Standard
The compiler inserts a call to the C routine
\emph on
_sdcc__external__startup()
\series bold
\emph default
\series default
at the start of the CODE area.
This routine is in the runtime library.
By default this routine returns 0, if this routine returns a non-zero value,
the static & global variable initialization will be skipped and the function
main will be invoked Other wise static & global variables will be initialized
before the function main is invoked.
You could add a
\emph on
_sdcc__external__startup()
\emph default
routine to your program to override the default if you need to setup hardware
or perform some other critical operation prior to static & global variable
initialization.
\layout Subsection
Inline Assembler Code
\layout Standard
SDCC allows the use of in-line assembler with a few restriction as regards
labels.
All labels defined within inline assembler code
\emph on
has to be
\emph default
of the form
\emph on
nnnnn$
\emph default
where nnnn is a number less than 100 (which implies a limit of utmost 100
inline assembler labels
\emph on
per function
\emph default
\noun on
)
\noun default
.
It is strongly recommended that each assembly instruction (including labels)
be placed in a separate line (as the example shows).
When the
\emph on
--peep-asm
\emph default
command line option is used, the inline assembler code will be passed through
the peephole optimizer.
This might cause some unexpected changes in the inline assembler code.
Please go throught the peephole optimizer rules defined in file
\emph on
SDCCpeeph.def
\emph default
carefully before using this option.
\newline
\newline
\family typewriter
_asm
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
b,#10
\newline
00001$:
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
djnz\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
b,00001$
\newline
_endasm ;
\family default
\size small
\newline
\newline
\size default
The inline assembler code can contain any valid code understood by the assembler
, this includes any assembler directives and comment lines.
The compiler does not do any validation of the code within the
\family typewriter
_asm ...
_endasm;
\family default
keyword pair.
\newline
\newline
Inline assembler code cannot reference any C-Labels, however it can reference
labels defined by the inline assembler, e.g.:
\newline
\newline
\family typewriter
foo() {
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
/* some c code */
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_asm
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
; some assembler code
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
ljmp $0003
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_endasm;
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
/* some more c code */
\newline
clabel:\SpecialChar ~
\SpecialChar ~
/* inline assembler cannot reference this label */
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_asm
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
$0003: ;label (can be reference by inline assembler only)
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_endasm ;
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
/* some more c code */
\newline
}
\newline
\newline
\family default
In other words inline assembly code can access labels defined in inline
assembly within the scope of the funtion.
\layout Standard
The same goes the other way, ie.
labels defines in inline assembly CANNOT be accessed by C statements.
\layout Subsection
int(16 bit) and long (32 bit) Support
\layout Standard
For signed & unsigned int (16 bit) and long (32 bit) variables, division,
multiplication and modulus operations are implemented by support routines.
These support routines are all developed in ANSI-C to facilitate porting
to other MCUs, although some model specific assembler optimations are used.
The following files contain the described routine, all of them can be found
in <installdir>/share/sdcc/lib.
\newline
\newline
\emph on
<pending: tabularise this>
\emph default
\newline
\newline
_mulsint.c - signed 16 bit multiplication (calls _muluint)
\newline
_muluint.c - unsigned 16 bit multiplication
\newline
_divsint.c - signed 16 bit division (calls _divuint)
\newline
_divuint.c - unsigned 16 bit division
\newline
_modsint.c - signed 16 bit modulus (call _moduint)
\newline
_moduint.c - unsigned 16 bit modulus
\newline
_mulslong.c - signed 32 bit multiplication (calls _mululong)
\newline
_mululong.c - unsigned32 bit multiplication
\newline
_divslong.c - signed 32 division (calls _divulong)
\newline
_divulong.c - unsigned 32 division
\newline
_modslong.c - signed 32 bit modulus (calls _modulong)
\newline
_modulong.c - unsigned 32 bit modulus
\size footnotesize
\newline
\newline
\size default
Since they are compiled as
\emph on
non-reentrant
\emph default
, interrupt service routines should not do any of the above operations.
If this is unavoidable then the above routines will need to be compiled
with the
\emph on
--stack-auto
\emph default
option, after which the source program will have to be compiled with
\emph on
--int-long-rent
\emph default
option.
\layout Subsection
Floating Point Support
\layout Standard
SDCC supports IEEE (single precision 4bytes) floating point numbers.The floating
point support routines are derived from gcc's floatlib.c and consists of
the following routines:
\newline
\newline
\emph on
<pending: tabularise this>
\emph default
\newline
\newline
_fsadd.c - add floating point numbers
\newline
_fssub.c - subtract floating point numbers
\newline
_fsdiv.c - divide floating point numbers
\newline
_fsmul.c - multiply floating point numbers
\newline
_fs2uchar.c - convert floating point to unsigned char
\newline
_fs2char.c - convert floating point to signed char
\newline
_fs2uint.c - convert floating point to unsigned int
\newline
_fs2int.c - convert floating point to signed int
\newline
_fs2ulong.c - convert floating point to unsigned long
\newline
_fs2long.c - convert floating point to signed long
\newline
_uchar2fs.c - convert unsigned char to floating point
\newline
_char2fs.c - convert char to floating point number
\newline
_uint2fs.c - convert unsigned int to floating point
\newline
_int2fs.c - convert int to floating point numbers
\newline
_ulong2fs.c - convert unsigned long to floating point number
\newline
_long2fs.c - convert long to floating point number
\size footnotesize
\newline
\newline
\size default
Note if all these routines are used simultaneously the data space might
overflow.
For serious floating point usage it is strongly recommended that the large
model be used.
\layout Subsection
MCS51 Memory Models
\layout Standard
SDCC allows two memory models for MCS51 code, small and large.
Modules compiled with different memory models should
\emph on
never
\emph default
be combined together or the results would be unpredictable.
The library routines supplied with the compiler are compiled as both small
and large.
The compiled library modules are contained in seperate directories as small
and large so that you can link to either set.
\layout Standard
When the large model is used all variables declared without a storage class
will be allocated into the external ram, this includes all parameters and
local variables (for non-reentrant functions).
When the small model is used variables without storage class are allocated
in the internal ram.
\layout Standard
Judicious usage of the processor specific storage classes and the 'reentrant'
function type will yield much more efficient code, than using the large
model.
Several optimizations are disabled when the program is compiled using the
large model, it is therefore strongly recommdended that the small model
be used unless absolutely required.
\layout Subsection
DS390 Memory Models
\layout Standard
The only model supported is Flat 24.
This generates code for the 24 bit contiguous addressing mode of the Dallas
DS80C390 part.
In this mode, up to four meg of external RAM or code space can be directly
addressed.
See the data sheets at www.dalsemi.com for further information on this part.
\newline
\newline
In older versions of the compiler, this option was used with the MCS51 code
generator (
\emph on
-mmcs51
\emph default
).
Now, however, the '390 has it's own code generator, selected by the
\emph on
-mds390
\emph default
switch.
\newline
\newline
Note that the compiler does not generate any code to place the processor
into 24 bitmode (although
\emph on
tinibios
\emph default
in the ds390 libraries will do that for you).
If you don't use
\emph on
tinibios
\emph default
, the boot loader or similar code must ensure that the processor is in 24
bit contiguous addressing mode before calling the SDCC startup code.
\newline
\newline
Like the
\emph on
--model-large
\emph default
option, variables will by default be placed into the XDATA segment.
\newline
\newline
Segments may be placed anywhere in the 4 meg address space using the usual
--*-loc options.
Note that if any segments are located above 64K, the -r flag must be passed
to the linker to generate the proper segment relocations, and the Intel
HEX output format must be used.
The -r flag can be passed to the linker by using the option
\emph on
-Wl-r
\emph default
on the sdcc command line.
However, currently the linker can not handle code segments > 64k.
\layout Subsection
Defines Created by the Compiler
\layout Standard
The compiler creates the following #defines.
\layout Itemize
SDCC - this Symbol is always defined.
\layout Itemize
SDCC_mcs51 or SDCC_ds390 or SDCC_z80, etc - depending on the model used
(e.g.: -mds390)
\layout Itemize
__mcs51 or __ds390 or __z80, etc - depending on the model used (e.g.
-mz80)
\layout Itemize
SDCC_STACK_AUTO - this symbol is defined when
\emph on
--stack-auto
\emph default
option is used.
\layout Itemize
SDCC_MODEL_SMALL - when
\emph on
--model-small
\emph default
is used.
\layout Itemize
SDCC_MODEL_LARGE - when
\emph on
--model-large
\emph default
is used.
\layout Itemize
SDCC_USE_XSTACK - when
\emph on
--xstack
\emph default
option is used.
\layout Itemize
SDCC_STACK_TENBIT - when
\emph on
-mds390
\emph default
is used
\layout Itemize
SDCC_MODEL_FLAT24 - when
\emph on
-mds390
\emph default
is used
\layout Section
SDCC Technical Data
\layout Subsection
Optimizations
\layout Standard
SDCC performs a host of standard optimizations in addition to some MCU specific
optimizations.
\layout Subsubsection
Sub-expression Elimination
\layout Standard
The compiler does local and global common subexpression elimination, e.g.:
\newline
\newline
\family typewriter
i = x + y + 1;
\newline
j = x + y;
\family default
\newline
\newline
will be translated to
\newline
\newline
\family typewriter
iTemp = x + y
\newline
i = iTemp + 1
\newline
j = iTemp
\newline
\family default
\newline
Some subexpressions are not as obvious as the above example, e.g.:
\newline
\newline
\family typewriter
a->b[i].c = 10;
\newline
a->b[i].d = 11;
\family default
\newline
\newline
In this case the address arithmetic a->b[i] will be computed only once;
the equivalent code in C would be.
\newline
\newline
\family typewriter
iTemp = a->b[i];
\newline
iTemp.c = 10;
\newline
iTemp.d = 11;
\family default
\newline
\newline
The compiler will try to keep these temporary variables in registers.
\layout Subsubsection
Dead-Code Elimination
\layout Standard
\family typewriter
int global;
\newline
void f () {
\newline
\SpecialChar ~
\SpecialChar ~
int i;
\newline
\SpecialChar ~
\SpecialChar ~
i = 1; \SpecialChar ~
/* dead store */
\newline
\SpecialChar ~
\SpecialChar ~
global = 1;\SpecialChar ~
/* dead store */
\newline
\SpecialChar ~
\SpecialChar ~
global = 2;
\newline
\SpecialChar ~
\SpecialChar ~
return;
\newline
\SpecialChar ~
\SpecialChar ~
global = 3;\SpecialChar ~
/* unreachable */
\newline
}
\family default
\newline
\newline
will be changed to
\newline
\newline
\family typewriter
int global; void f ()
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
global = 2;
\newline
\SpecialChar ~
\SpecialChar ~
return;
\newline
}
\layout Subsubsection
Copy-Propagation
\layout Standard
\family typewriter
int f() {
\newline
\SpecialChar ~
\SpecialChar ~
int i, j;
\newline
\SpecialChar ~
\SpecialChar ~
i = 10;
\newline
\SpecialChar ~
\SpecialChar ~
j = i;
\newline
\SpecialChar ~
\SpecialChar ~
return j;
\newline
}
\family default
\newline
\newline
will be changed to
\newline
\newline
\family typewriter
int f() {
\newline
\SpecialChar ~
\SpecialChar ~
int i,j;
\newline
\SpecialChar ~
\SpecialChar ~
i = 10;
\newline
\SpecialChar ~
\SpecialChar ~
j = 10;
\newline
\SpecialChar ~
\SpecialChar ~
return 10;
\newline
}
\newline
\newline
\family default
Note: the dead stores created by this copy propagation will be eliminated
by dead-code elimination.
\layout Subsubsection
Loop Optimizations
\layout Standard
Two types of loop optimizations are done by SDCC loop invariant lifting
and strength reduction of loop induction variables.
In addition to the strength reduction the optimizer marks the induction
variables and the register allocator tries to keep the induction variables
in registers for the duration of the loop.
Because of this preference of the register allocator, loop induction optimizati
on causes an increase in register pressure, which may cause unwanted spilling
of other temporary variables into the stack / data space.
The compiler will generate a warning message when it is forced to allocate
extra space either on the stack or data space.
If this extra space allocation is undesirable then induction optimization
can be eliminated either for the entire source file (with --noinduction
option) or for a given function only using #pragma\SpecialChar ~
NOINDUCTION.
\newline
\newline
Loop Invariant:
\newline
\newline
\family typewriter
for (i = 0 ; i < 100 ; i ++)
\newline
\SpecialChar ~
\SpecialChar ~
f += k + l;
\family default
\newline
\newline
changed to
\newline
\newline
\family typewriter
itemp = k + l;
\newline
for (i = 0; i < 100; i++)
\newline
\SpecialChar ~
\SpecialChar ~
f += itemp;
\family default
\newline
\newline
As mentioned previously some loop invariants are not as apparent, all static
address computations are also moved out of the loop.
\newline
\newline
Strength Reduction, this optimization substitutes an expression by a cheaper
expression:
\newline
\newline
\family typewriter
for (i=0;i < 100; i++)
\newline
\SpecialChar ~
\SpecialChar ~
ar[i*5] = i*3;
\family default
\newline
\newline
changed to
\newline
\newline
\family typewriter
itemp1 = 0;
\newline
itemp2 = 0;
\newline
for (i=0;i< 100;i++) {
\newline
\SpecialChar ~
\SpecialChar ~
ar[itemp1] = itemp2;
\newline
\SpecialChar ~
\SpecialChar ~
itemp1 += 5;
\newline
\SpecialChar ~
\SpecialChar ~
itemp2 += 3;
\newline
}
\family default
\newline
\newline
The more expensive multiplication is changed to a less expensive addition.
\layout Subsubsection
Loop Reversing
\layout Standard
This optimization is done to reduce the overhead of checking loop boundaries
for every iteration.
Some simple loops can be reversed and implemented using a
\begin_inset Quotes eld
\end_inset
decrement and jump if not zero
\begin_inset Quotes erd
\end_inset
instruction.
SDCC checks for the following criterion to determine if a loop is reversible
(note: more sophisticated compilers use data-dependency analysis to make
this determination, SDCC uses a more simple minded analysis).
\layout Itemize
The 'for' loop is of the form
\newline
\newline
\family typewriter
for (<symbol> = <expression> ; <sym> [< | <=] <expression> ; [<sym>++ |
<sym> += 1])
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
<for body>
\layout Itemize
The <for body> does not contain
\begin_inset Quotes eld
\end_inset
continue
\begin_inset Quotes erd
\end_inset
or 'break
\begin_inset Quotes erd
\end_inset
.
\layout Itemize
All goto's are contained within the loop.
\layout Itemize
No function calls within the loop.
\layout Itemize
The loop control variable <sym> is not assigned any value within the loop
\layout Itemize
The loop control variable does NOT participate in any arithmetic operation
within the loop.
\layout Itemize
There are NO switch statements in the loop.
\layout Subsubsection
Algebraic Simplifications
\layout Standard
SDCC does numerous algebraic simplifications, the following is a small sub-set
of these optimizations.
\newline
\newline
\family typewriter
i = j + 0 ; /* changed to */ i = j;
\newline
i /= 2; /* changed to */ i >>= 1;
\newline
i = j - j ; /* changed to */ i = 0;
\newline
i = j / 1 ; /* changed to */ i = j;
\family default
\newline
\newline
Note the subexpressions given above are generally introduced by macro expansions
or as a result of copy/constant propagation.
\layout Subsubsection
'switch' Statements
\layout Standard
SDCC changes switch statements to jump tables when the following conditions
are true.
\layout Itemize
The case labels are in numerical sequence, the labels need not be in order,
and the starting number need not be one or zero.
\newline
\newline
\family typewriter
switch(i) {\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
switch (i) {
\newline
case 4:...
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
case 1: ...
\newline
case 5:...
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
case 2: ...
\newline
case 3:...
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
case 3: ...
\newline
case 6:...
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
case 4: ...
\newline
}\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
}
\newline
\newline
\family default
Both the above switch statements will be implemented using a jump-table.
\layout Itemize
The number of case labels is at least three, since it takes two conditional
statements to handle the boundary conditions.
\layout Itemize
The number of case labels is less than 84, since each label takes 3 bytes
and a jump-table can be utmost 256 bytes long.
\layout Standard
Switch statements which have gaps in the numeric sequence or those that
have more that 84 case labels can be split into more than one switch statement
for efficient code generation, e.g.:
\newline
\newline
\family typewriter
switch (i) {
\newline
case 1: ...
\newline
case 2: ...
\newline
case 3: ...
\newline
case 4: ...
\newline
case 9: ...
\newline
case 10: ...
\newline
case 11: ...
\newline
case 12: ...
\newline
}
\family default
\newline
\newline
If the above switch statement is broken down into two switch statements
\newline
\newline
\family typewriter
switch (i) {
\newline
case 1: ...
\newline
case 2: ...
\newline
case 3: ...
\newline
case 4: ...
\newline
}
\newline
\newline
\family default
and
\family typewriter
\newline
\newline
switch (i) {
\newline
case 9: \SpecialChar ~
...
\newline
case 10: ...
\newline
case 11: ...
\newline
case 12:\SpecialChar ~
...
\newline
}
\newline
\newline
\family default
then both the switch statements will be implemented using jump-tables whereas
the unmodified switch statement will not be.
\layout Subsubsection
Bit-shifting Operations.
\layout Standard
Bit shifting is one of the most frequently used operation in embedded programmin
g.
SDCC tries to implement bit-shift operations in the most efficient way
possible, e.g.:
\newline
\family typewriter
\newline
unsigned char i;
\newline
...
\newline
i>>= 4;
\newline
...
\newline
\family default
\newline
generates the following code:
\newline
\family typewriter
\newline
mov a,_i
\newline
swap a
\newline
anl a,#0x0f
\newline
mov _i,a
\family default
\newline
\newline
In general SDCC will never setup a loop if the shift count is known.
Another example:
\newline
\newline
\family typewriter
unsigned int i;
\newline
...
\newline
i >>= 9;
\newline
...
\family default
\newline
\newline
will generate:
\newline
\newline
\family typewriter
mov a,(_i + 1)
\newline
mov (_i + 1),#0x00
\newline
clr c
\newline
rrc a
\newline
mov _i,a
\family default
\newline
\newline
Note that SDCC stores numbers in little-endian format (i.e.
lowest order first).
\layout Subsubsection
Bit-rotation
\layout Standard
A special case of the bit-shift operation is bit rotation, SDCC recognizes
the following expression to be a left bit-rotation:
\newline
\newline
\family typewriter
unsigned char i;
\newline
...
\newline
i = ((i << 1) | (i >> 7));
\family default
\newline
...
\newline
\newline
will generate the following code:
\newline
\newline
\family typewriter
mov a,_i
\newline
rl a
\newline
mov _i,a
\family default
\newline
\newline
SDCC uses pattern matching on the parse tree to determine this operation.Variatio
ns of this case will also be recognized as bit-rotation, i.e.:
\newline
\newline
\family typewriter
i = ((i >> 7) | (i << 1)); /* left-bit rotation */
\layout Subsubsection
Highest Order Bit
\layout Standard
It is frequently required to obtain the highest order bit of an integral
type (long, int, short or char types).
SDCC recognizes the following expression to yield the highest order bit
and generates optimized code for it, e.g.:
\newline
\newline
\family typewriter
unsigned int gint;
\newline
\newline
foo () {
\newline
unsigned char hob;
\newline
\SpecialChar ~
\SpecialChar ~
...
\newline
\SpecialChar ~
\SpecialChar ~
hob = (gint >> 15) & 1;
\newline
\SpecialChar ~
\SpecialChar ~
..
\newline
}
\family default
\newline
\newline
will generate the following code:
\newline
\family typewriter
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
61 ;\SpecialChar ~
hob.c 7
\newline
\SpecialChar ~
\SpecialChar ~
000A E5*01\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
62\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov\SpecialChar ~
a,(_gint + 1)
\newline
\SpecialChar ~
\SpecialChar ~
000C 33\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
63\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
rlc\SpecialChar ~
a
\newline
\SpecialChar ~
\SpecialChar ~
000D E4\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
64\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
clr\SpecialChar ~
a
\newline
\SpecialChar ~
\SpecialChar ~
000E 13\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
65\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
rrc\SpecialChar ~
a
\newline
\SpecialChar ~
\SpecialChar ~
000F F5*02\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
66\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov\SpecialChar ~
_foo_hob_1_1,a
\newline
\newline
\family default
Variations of this case however will
\emph on
not
\emph default
be recognized.
It is a standard C expression, so I heartily recommend this be the only
way to get the highest order bit, (it is portable).
Of course it will be recognized even if it is embedded in other expressions,
e.g.:
\newline
\newline
\family typewriter
xyz = gint + ((gint >> 15) & 1);
\family default
\newline
\newline
will still be recognized.
\layout Subsubsection
Peep-hole Optimizer
\layout Standard
The compiler uses a rule based, pattern matching and re-writing mechanism
for peep-hole optimization.
It is inspired by
\emph on
copt
\emph default
a peep-hole optimizer by Christopher W.
Fraser (cwfraser@microsoft.com).
A default set of rules are compiled into the compiler, additional rules
may be added with the
\emph on
--peep-file <filename>
\emph default
option.
The rule language is best illustrated with examples.
\newline
\newline
\family typewriter
replace {
\newline
\SpecialChar ~
\SpecialChar ~
mov %1,a
\newline
\SpecialChar ~
\SpecialChar ~
mov a,%1
\newline
} by {
\newline
\SpecialChar ~
\SpecialChar ~
mov %1,a
\newline
}
\family default
\newline
\newline
The above rule will change the following assembly sequence:
\newline
\newline
\family typewriter
\SpecialChar ~
\SpecialChar ~
mov r1,a
\newline
\SpecialChar ~
\SpecialChar ~
mov a,r1
\family default
\newline
\newline
to
\newline
\newline
\family typewriter
mov r1,a
\family default
\newline
\newline
Note: All occurrences of a
\emph on
%n
\emph default
(pattern variable) must denote the same string.
With the above rule, the assembly sequence:
\newline
\newline
\family typewriter
\SpecialChar ~
\SpecialChar ~
mov r1,a
\newline
\SpecialChar ~
\SpecialChar ~
mov a,r2
\family default
\newline
\newline
will remain unmodified.
\newline
\newline
Other special case optimizations may be added by the user (via
\emph on
--peep-file option
\emph default
).
E.g.
some variants of the 8051 MCU allow only
\family typewriter
ajmp
\family default
and
\family typewriter
acall
\family default
.
The following two rules will change all
\family typewriter
ljmp
\family default
and
\family typewriter
lcall
\family default
to
\family typewriter
ajmp
\family default
and
\family typewriter
acall
\family default
\newline
\newline
\family typewriter
replace { lcall %1 } by { acall %1 }
\newline
replace { ljmp %1 } by { ajmp %1 }
\family default
\newline
\newline
The
\emph on
inline-assembler code
\emph default
is also passed through the peep hole optimizer, thus the peephole optimizer
can also be used as an assembly level macro expander.
The rules themselves are MCU dependent whereas the rule language infra-structur
e is MCU independent.
Peephole optimization rules for other MCU can be easily programmed using
the rule language.
\newline
\newline
The syntax for a rule is as follows:
\newline
\newline
\family typewriter
rule := replace [ restart ] '{' <assembly sequence> '
\backslash
n'
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
'}' by '{' '
\backslash
n'
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
<assembly sequence> '
\backslash
n'
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
'}' [if <functionName> ] '
\backslash
n'
\newline
\family default
\newline
<assembly sequence> := assembly instruction (each instruction including
labels must be on a separate line).
\newline
\newline
The optimizer will apply to the rules one by one from the top in the sequence
of their appearance, it will terminate when all rules are exhausted.
If the 'restart' option is specified, then the optimizer will start matching
the rules again from the top, this option for a rule is expensive (performance)
, it is intended to be used in situations where a transformation will trigger
the same rule again.
An example of this (not a good one, it has side effects) is the following
rule:
\newline
\newline
\family typewriter
replace restart {
\newline
\SpecialChar ~
\SpecialChar ~
pop %1
\newline
\SpecialChar ~
\SpecialChar ~
push %1 } by {
\newline
\SpecialChar ~
\SpecialChar ~
; nop
\newline
}
\family default
\newline
\newline
Note that the replace pattern cannot be a blank, but can be a comment line.
Without the 'restart' option only the inner most 'pop' 'push' pair would
be eliminated, i.e.:
\newline
\newline
\family typewriter
\SpecialChar ~
\SpecialChar ~
pop ar1
\newline
\SpecialChar ~
\SpecialChar ~
pop ar2
\newline
\SpecialChar ~
\SpecialChar ~
push ar2
\newline
\SpecialChar ~
\SpecialChar ~
push ar1
\family default
\newline
\newline
would result in:
\newline
\newline
\family typewriter
\SpecialChar ~
\SpecialChar ~
pop ar1
\newline
\SpecialChar ~
\SpecialChar ~
; nop
\newline
\SpecialChar ~
\SpecialChar ~
push ar1
\family default
\newline
\newline
\emph on
with
\emph default
the restart option the rule will be applied again to the resulting code
and then all the pop-push pairs will be eliminated to yield:
\newline
\newline
\family typewriter
\SpecialChar ~
\SpecialChar ~
; nop
\newline
\SpecialChar ~
\SpecialChar ~
; nop
\family default
\newline
\newline
A conditional function can be attached to a rule.
Attaching rules are somewhat more involved, let me illustrate this with
an example.
\newline
\newline
\family typewriter
replace {
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
ljmp %5
\newline
%2:
\newline
} by {
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sjmp %5
\newline
%2:
\newline
} if labelInRange
\family default
\newline
\newline
The optimizer does a look-up of a function name table defined in function
\emph on
callFuncByName
\emph default
in the source file SDCCpeeph.c, with the name
\emph on
labelInRange
\emph default
.
If it finds a corresponding entry the function is called.
Note there can be no parameters specified for these functions, in this
case the use of
\emph on
%5
\emph default
is crucial, since the function
\emph on
labelInRange
\emph default
expects to find the label in that particular variable (the hash table containin
g the variable bindings is passed as a parameter).
If you want to code more such functions, take a close look at the function
labelInRange and the calling mechanism in source file SDCCpeeph.c.
I know this whole thing is a little kludgey, but maybe some day we will
have some better means.
If you are looking at this file, you will also see the default rules that
are compiled into the compiler, you can add your own rules in the default
set there if you get tired of specifying the --peep-file option.
\layout Subsection
Pragmas
\layout Standard
SDCC supports the following #pragma directives.
This directives are applicable only at a function level.
\layout Itemize
SAVE - this will save all the current options.
\layout Itemize
RESTORE - will restore the saved options from the last save.
Note that SAVES & RESTOREs cannot be nested.
SDCC uses the same buffer to save the options each time a SAVE is called.
\layout Itemize
NOGCSE - will stop global subexpression elimination.
\layout Itemize
NOINDUCTION - will stop loop induction optimizations.
\layout Itemize
NOJTBOUND - will not generate code for boundary value checking, when switch
statements are turned into jump-tables.
\layout Itemize
NOOVERLAY - the compiler will not overlay the parameters and local variables
of a function.
\layout Itemize
NOLOOPREVERSE - Will not do loop reversal optimization
\layout Itemize
EXCLUDE NONE | {acc[,b[,dpl[,dph]]] - The exclude pragma disables generation
of pair of push/pop instruction in ISR function (using interrupt keyword).
The directive should be placed immediately before the ISR function definition
and it affects ALL ISR functions following it.
To enable the normal register saving for ISR functions use #pragma\SpecialChar ~
EXCLUDE\SpecialChar ~
none.
\layout Itemize
CALLEE-SAVES function1[,function2[,function3...]] - The compiler by default
uses a caller saves convention for register saving across function calls,
however this can cause unneccessary register pushing & popping when calling
small functions from larger functions.
This option can be used to switch the register saving convention for the
function names specified.
The compiler will not save registers when calling these functions, extra
code will be generated at the entry & exit for these functions to save
& restore the registers used by these functions, this can SUBSTANTIALLY
reduce code & improve run time performance of the generated code.
In future the compiler (with interprocedural analysis) will be able to
determine the appropriate scheme to use for each function call.
If --callee-saves command line option is used, the function names specified
in #pragma\SpecialChar ~
CALLEE-SAVES is appended to the list of functions specified inthe
command line.
\layout Standard
The pragma's are intended to be used to turn-off certain optimizations which
might cause the compiler to generate extra stack / data space to store
compiler generated temporary variables.
This usually happens in large functions.
Pragma directives should be used as shown in the following example, they
are used to control options & optimizations for a given function; pragmas
should be placed before and/or after a function, placing pragma's inside
a function body could have unpredictable results.
\newline
\newline
\family typewriter
#pragma SAVE /* save the current settings */
\newline
#pragma NOGCSE /* turnoff global subexpression elimination */
\newline
#pragma NOINDUCTION /* turn off induction optimizations */
\newline
int foo ()
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
...
\newline
\SpecialChar ~
\SpecialChar ~
/* large code */
\newline
\SpecialChar ~
\SpecialChar ~
...
\newline
}
\newline
#pragma RESTORE /* turn the optimizations back on */
\family default
\newline
\newline
The compiler will generate a warning message when extra space is allocated.
It is strongly recommended that the SAVE and RESTORE pragma's be used when
changing options for a function.
\layout Subsection
\emph on
<pending: this is messy and incomplete>
\emph default
Library Routines
\layout Standard
The following library routines are provided for your convenience.
\layout Standard
stdio.h - Contains the following functions printf & sprintf these routines
are developed by Martijn van Balen <balen@natlab.research.philips.com>.
\layout Standard
%[flags][width][b|B|l|L]type
\layout Standard
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
flags: -\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
left justify output in specified field width
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
+\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
prefix output with +/- sign if output is signed type
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
space\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
prefix output with a blank if it's a signed positive value
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
width:\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
specifies minimum number of characters outputted for numbers
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
or strings.
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
- For numbers, spaces are added on the left when needed.
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
If width starts with a zero character, zeroes and used
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
instead of spaces.
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
- For strings, spaces are are added on the left or right (when
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
flag '-' is used) when needed.
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
b/B:\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
byte argument (used by d, u, o, x, X)
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
l/L:\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
long argument (used by d, u, o, x, X)
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
type:\SpecialChar ~
d\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
decimal number
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
u\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
unsigned decimal number
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
o\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
unsigned octal number
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
x\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
unsigned hexadecimal number (0-9, a-f)
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
X\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
unsigned hexadecimal number (0-9, A-F)
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
c\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
character
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
s\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
string (generic pointer)
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
p\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
generic pointer (I:data/idata, C:code, X:xdata, P:paged)
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
f\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
float (still to be implemented)
\layout Standard
Also contains a very simple version of printf (printf_small).
This simplified version of printf supports only the following formats.
\layout Standard
format\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
output\SpecialChar ~
type\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
argument-type
\newline
%d \SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
decimal \SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
short/int
\newline
%ld\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
decimal\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
long
\newline
%hd\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
decimal\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
char
\newline
%x\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
hexadecimal\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
short/int
\newline
%lx\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
hexadecimal\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
long
\newline
%hx\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
hexadecimal\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
char
\newline
%o\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
octal\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
short/int
\newline
%lo\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
octal\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
long
\newline
%ho\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
octal\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
char
\newline
%c\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
character\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
char
\newline
%s\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
character\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
_generic pointer
\layout Standard
The routine is very stack intesive, --stack-after-data parameter should
be used when using this routine, the routine also takes about 1K of code
space.
It also expects an external function named putchar(char) to be present
(this can be changed).
When using the %s format the string / pointer should be cast to a generic
pointer.
eg.
\layout Standard
printf_small(
\begin_inset Quotes eld
\end_inset
my str %s, my int %d
\backslash
n
\begin_inset Quotes erd
\end_inset
,(char _generic *)mystr,myint);
\layout Itemize
stdarg.h - contains definition for the following macros to be used for variable
parameter list, note that a function can have a variable parameter list
if and only if it is 'reentrant'
\begin_deeper
\layout Standard
va_list, va_start, va_arg, va_end.
\end_deeper
\layout Itemize
setjmp.h - contains defintion for ANSI setjmp & longjmp routines.
Note in this case setjmp & longjmp can be used between functions executing
within the same register bank, if long jmp is executed from a function
that is using a different register bank from the function issuing the setjmp
function, the results may be unpredictable.
The jump buffer requires 3 bytes of data (the stack pointer & a 16 byte
return address), and can be placed in any address space.
\layout Itemize
stdlib.h - contains the following functions.
\begin_deeper
\layout Standard
atoi, atol.
\end_deeper
\layout Itemize
string.h - contains the following functions.
\begin_deeper
\layout Standard
strcpy, strncpy, strcat, strncat, strcmp, strncmp, strchr, strrchr, strspn,
strcspn, strpbrk, strstr, strlen, strtok, memcpy, memcmp, memset.
\end_deeper
\layout Itemize
ctype.h - contains the following routines.
\begin_deeper
\layout Standard
iscntrl, isdigit, isgraph, islower, isupper, isprint, ispunct, isspace,
isxdigit, isalnum, isalpha.
\end_deeper
\layout Itemize
malloc.h - The malloc routines are developed by Dmitry S.
Obukhov (dso@usa.net).
These routines will allocate memory from the external ram.
Here is a description on how to use them (as described by the author).
\begin_deeper
\layout Standard
//Example:
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
#define DYNAMIC_MEMORY_SIZE 0x2000
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
.....
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
unsigned char xdata dynamic_memory_pool[DYNAMIC_MEMORY_SIZE];
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
unsigned char xdata * current_buffer;
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
.....
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
void main(void)
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
...
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
init_dynamic_memory(dynamic_memory_pool,DYNAMIC_MEMORY_SIZE);
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//Now it's possible to use malloc.
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
...
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
current_buffer = malloc(0x100);
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
//
\end_deeper
\layout Itemize
serial.h - Serial IO routines are also developed by Dmitry S.
Obukhov (dso@usa.net).
These routines are interrupt driven with a 256 byte circular buffer, they
also expect external ram to be present.
Please see documentation in file SDCCDIR/sdcc51lib/serial.c.
Note the header file
\begin_inset Quotes eld
\end_inset
serial.h
\begin_inset Quotes erd
\end_inset
MUST be included in the file containing the 'main' function.
\layout Itemize
ser.h - Alternate serial routine provided by Wolfgang Esslinger <wolfgang@WiredMi
nds.com> these routines are more compact and faster.
Please see documentation in file SDCCDIR/sdcc51lib/ser.c
\layout Itemize
ser_ir.h - Another alternate set of serial routines provided by Josef Wolf
<jw@raven.inka.de>, these routines do not use the external ram.
\layout Itemize
reg51.h - contains register definitions for a standard 8051
\layout Itemize
float.h - contains min, max and other floating point related stuff.
\layout Standard
All library routines are compiled as --model-small, they are all non-reentrant,
if you plan to use the large model or want to make these routines reentrant,
then they will have to be recompiled with the appropriate compiler option.
\layout Standard
Have not had time to do the more involved routines like printf, will get
to them shortly.
\layout Subsection
Interfacing with Assembly Routines
\layout Subsubsection
Global Registers used for Parameter Passing
\layout Standard
The compiler always uses the global registers
\emph on
DPL,DPH,B
\emph default
and
\emph on
ACC
\emph default
to pass the first parameter to a routine.
The second parameter onwards is either allocated on the stack (for reentrant
routines or if --stack-auto is used) or in the internal / external ram
(depending on the memory model).
\layout Subsubsection
Assembler Routine(non-reentrant)
\layout Standard
In the following example the function cfunc calls an assembler routine asm_func,
which takes two parameters.
\newline
\newline
\family typewriter
extern int asm_func(unsigned char, unsigned char);
\newline
\newline
int c_func (unsigned char i, unsigned char j)
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
return asm_func(i,j);
\newline
}
\newline
\newline
int main()
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
return c_func(10,9);
\newline
}
\newline
\newline
\family default
The corresponding assembler function is:
\newline
\newline
\family typewriter
.globl _asm_func_PARM_2
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
.globl _asm_func
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
.area OSEG
\newline
_asm_func_PARM_2:
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
.ds 1
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
.area CSEG
\newline
_asm_func:
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov a,dpl
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
add a,_asm_func_PARM_2
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov dpl,a
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov dpl,#0x00
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
ret
\newline
\newline
\family default
Note here that the return values are placed in 'dpl' - One byte return value,
'dpl' LSB & 'dph' MSB for two byte values.
'dpl', 'dph' and 'b' for three byte values (generic pointers) and 'dpl','dph','
b' & 'acc' for four byte values.
\layout Standard
The parameter naming convention is _<function_name>_PARM_<n>, where n is
the parameter number starting from 1, and counting from the left.
The first parameter is passed in
\begin_inset Quotes eld
\end_inset
dpl
\begin_inset Quotes erd
\end_inset
for One bye parameter,
\begin_inset Quotes eld
\end_inset
dptr
\begin_inset Quotes erd
\end_inset
if two bytes,
\begin_inset Quotes eld
\end_inset
b,dptr
\begin_inset Quotes erd
\end_inset
for three bytes and
\begin_inset Quotes eld
\end_inset
acc,b,dptr
\begin_inset Quotes erd
\end_inset
for four bytes, the varible name for the second parameter will be _<function_na
me>_PARM_2.
\newline
\newline
Assemble the assembler routine with the following command:
\newline
\newline
\family sans
\series bold
asx8051 -losg asmfunc.asm
\newline
\newline
\family default
\series default
Then compile and link the assembler routine to the C source file with the
following command:
\newline
\newline
\family sans
\series bold
sdcc cfunc.c asmfunc.rel
\layout Subsubsection
Assembler Routine(reentrant)
\layout Standard
In this case the second parameter onwards will be passed on the stack, the
parameters are pushed from right to left i.e.
after the call the left most parameter will be on the top of the stack.
Here is an example:
\newline
\newline
\family typewriter
extern int asm_func(unsigned char, unsigned char);
\newline
\newline
int c_func (unsigned char i, unsigned char j) reentrant
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
return asm_func(i,j);
\newline
}
\newline
\newline
int main()
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
return c_func(10,9);
\newline
}
\newline
\family default
\newline
The corresponding assembler routine is:
\newline
\newline
\family typewriter
.globl _asm_func
\newline
_asm_func:
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
push _bp
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov _bp,sp
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov r2,dpl
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov a,_bp
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
clr c
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
add a,#0xfd
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov r0,a
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
add a,#0xfc
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov r1,a
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov a,@r0
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
add a,r2
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov dpl,a
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov dph,#0x00
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
mov sp,_bp
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
pop _bp
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
ret
\newline
\newline
\family default
The compiling and linking procedure remains the same, however note the extra
entry & exit linkage required for the assembler code, _bp is the stack
frame pointer and is used to compute the offset into the stack for parameters
and local variables.
\layout Subsection
External Stack
\layout Standard
The external stack is located at the start of the external ram segment,
and is 256 bytes in size.
When --xstack option is used to compile the program, the parameters and
local variables of all reentrant functions are allocated in this area.
This option is provided for programs with large stack space requirements.
When used with the --stack-auto option, all parameters and local variables
are allocated on the external stack (note support libraries will need to
be recompiled with the same options).
\layout Standard
The compiler outputs the higher order address byte of the external ram segment
into PORT P2, therefore when using the External Stack option, this port
MAY NOT be used by the application program.
\layout Subsection
ANSI-Compliance
\layout Standard
Deviations from the compliancy.
\layout Itemize
functions are not always reentrant.
\layout Itemize
structures cannot be assigned values directly, cannot be passed as function
parameters or assigned to each other and cannot be a return value from
a function, e.g.:
\family typewriter
\newline
\newline
struct s { ...
};
\newline
struct s s1, s2;
\newline
foo()
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
...
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
s1 = s2 ; /* is invalid in SDCC although allowed in ANSI */
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
...
\newline
}
\newline
struct s foo1 (struct s parms) /* is invalid in SDCC although allowed in
ANSI */
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
struct s rets;
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
...
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
return rets;/* is invalid in SDCC although allowed in ANSI */
\newline
}
\layout Itemize
'long long' (64 bit integers) not supported.
\layout Itemize
'double' precision floating point not supported.
\layout Itemize
No support for setjmp and longjmp (for now).
\layout Itemize
Old K&R style function declarations are NOT allowed.
\newline
\family typewriter
\newline
foo(i,j) /* this old style of function declarations */
\newline
int i,j; /* are valid in ANSI but not valid in SDCC */
\newline
{
\newline
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
...
\newline
}
\layout Itemize
functions declared as pointers must be dereferenced during the call.
\newline
\family typewriter
\newline
int (*foo)();
\newline
...
\newline
/* has to be called like this */
\newline
(*foo)(); /* ansi standard allows calls to be made like 'foo()' */
\layout Subsection
Cyclomatic Complexity
\layout Standard
Cyclomatic complexity of a function is defined as the number of independent
paths the program can take during execution of the function.
This is an important number since it defines the number test cases you
have to generate to validate the function.
The accepted industry standard for complexity number is 10, if the cyclomatic
complexity reported by SDCC exceeds 10 you should think about simplification
of the function logic.
Note that the complexity level is not related to the number of lines of
code in a function.
Large functions can have low complexity, and small functions can have large
complexity levels.
\newline
\newline
SDCC uses the following formula to compute the complexity:
\newline
\layout Standard
complexity = (number of edges in control flow graph) - (number of nodes
in control flow graph) + 2;
\newline
\newline
Having said that the industry standard is 10, you should be aware that in
some cases it be may unavoidable to have a complexity level of less than
10.
For example if you have switch statement with more than 10 case labels,
each case label adds one to the complexity level.
The complexity level is by no means an absolute measure of the algorithmic
complexity of the function, it does however provide a good starting point
for which functions you might look at for further optimization.
\layout Section
TIPS
\layout Standard
Here are a few guidelines that will help the compiler generate more efficient
code, some of the tips are specific to this compiler others are generally
good programming practice.
\layout Itemize
Use the smallest data type to represent your data-value.
If it is known in advance that the value is going to be less than 256 then
use a 'char' instead of a 'short' or 'int'.
\layout Itemize
Use unsigned when it is known in advance that the value is not going to
be negative.
This helps especially if you are doing division or multiplication.
\layout Itemize
NEVER jump into a LOOP.
\layout Itemize
Declare the variables to be local whenever possible, especially loop control
variables (induction).
\layout Itemize
Since the compiler does not do implicit integral promotion, the programmer
should do an explicit cast when integral promotion is required.
\layout Itemize
Reducing the size of division, multiplication & modulus operations can reduce
code size substantially.
Take the following code for example.
\family typewriter
\newline
\newline
foobar(unsigned int p1, unsigned char ch)
\newline
{
\newline
unsigned char ch1 = p1 % ch ;
\newline
....
\newline
}
\newline
\family default
\newline
For the modulus operation the variable ch will be promoted to unsigned int
first then the modulus operation will be performed (this will lead to a
call to support routine _muduint()), and the result will be casted to an
int.
If the code is changed to
\newline
\family typewriter
\newline
foobar(unsigned int p1, unsigned char ch)
\newline
{
\newline
unsigned char ch1 = (unsigned char)p1 % ch ;
\newline
....
\newline
}
\newline
\family default
\newline
It would substantially reduce the code generated (future versions of the
compiler will be smart enough to detect such optimization oppurtunities).
\layout Subsection
Notes on MCS51 memory layout
\layout Standard
The 8051 family of micro controller have a minimum of 128 bytes of internal
memory which is structured as follows
\newline
\newline
- Bytes 00-1F - 32 bytes to hold up to 4 banks of the registers R7 to R7
\newline
- Bytes 20-2F - 16 bytes to hold 128 bit variables and
\newline
- Bytes 30-7F - 60 bytes for general purpose use.
\newline
\newline
Normally the SDCC compiler will only utilise the first bank of registers,
but it is possible to specify that other banks of registers should be used
in interrupt routines.
By default, the compiler will place the stack after the last bank of used
registers, i.e.
if the first 2 banks of registers are used, it will position the base of
the internal stack at address 16 (0X10).
This implies that as the stack grows, it will use up the remaining register
banks, and the 16 bytes used by the 128 bit variables, and 60 bytes for
general purpose use.
\layout Standard
By default, the compiler uses the 60 general purpose bytes to hold "near
data".
The compiler/optimiser may also declare some Local Variables in this area
to hold local data.
\layout Standard
If any of the 128 bit variables are used, or near data is being used then
care needs to be taken to ensure that the stack does not grow so much that
it starts to over write either your bit variables or "near data".
There is no runtime checking to prevent this from happening.
\layout Standard
The amount of stack being used is affected by the use of the "internal stack"
to save registers before a subroutine call is made (--stack-auto will declare
parameters and local variables on the stack) and the number of nested subroutin
es.
\layout Standard
If you detect that the stack is over writing you data, then the following
can be done.
--xstack will cause an external stack to be used for saving registers and
(if --stack-auto is being used) storing parameters and local variables.
However this will produce more code which will be slower to execute.
\layout Standard
--stack-loc will allow you specify the start of the stack, i.e.
you could start it after any data in the general purpose area.
However this may waste the memory not used by the register banks and if
the size of the "near data" increases, it may creep into the bottom of
the stack.
\layout Standard
--stack-after-data, similar to the --stack-loc, but it automatically places
the stack after the end of the "near data".
Again this could waste any spare register space.
\layout Standard
--data-loc allows you to specify the start address of the near data.
This could be used to move the "near data" further away from the stack
giving it more room to grow.
This will only work if no bit variables are being used and the stack can
grow to use the bit variable space.
\newline
\newline
Conclusion.
\newline
\newline
If you find that the stack is over writing your bit variables or "near data"
then the approach which best utilised the internal memory is to position
the "near data" after the last bank of used registers or, if you use bit
variables, after the last bit variable by using the --data-loc, e.g.
if two register banks are being used and no bit variables, --data-loc 16,
and use the --stack-after-data option.
\layout Standard
If bit variables are being used, another method would be to try and squeeze
the data area in the unused register banks if it will fit, and start the
stack after the last bit variable.
\layout Section
Retargetting for other MCUs.
\layout Standard
The issues for retargetting the compiler are far too numerous to be covered
by this document.
What follows is a brief description of each of the seven phases of the
compiler and its MCU dependency.
\layout Itemize
Parsing the source and building the annotated parse tree.
This phase is largely MCU independent (except for the language extensions).
Syntax & semantic checks are also done in this phase, along with some initial
optimizations like back patching labels and the pattern matching optimizations
like bit-rotation etc.
\layout Itemize
The second phase involves generating an intermediate code which can be easy
manipulated during the later phases.
This phase is entirely MCU independent.
The intermediate code generation assumes the target machine has unlimited
number of registers, and designates them with the name iTemp.
The compiler can be made to dump a human readable form of the code generated
by using the --dumpraw option.
\layout Itemize
This phase does the bulk of the standard optimizations and is also MCU independe
nt.
This phase can be broken down into several sub-phases:
\newline
\newline
Break down intermediate code (iCode) into basic blocks.
\newline
Do control flow & data flow analysis on the basic blocks.
\newline
Do local common subexpression elimination, then global subexpression elimination
\newline
Dead code elimination
\newline
Loop optimizations
\newline
If loop optimizations caused any changes then do 'global subexpression eliminati
on' and 'dead code elimination' again.
\layout Itemize
This phase determines the live-ranges; by live range I mean those iTemp
variables defined by the compiler that still survive after all the optimization
s.
Live range analysis is essential for register allocation, since these computati
on determines which of these iTemps will be assigned to registers, and for
how long.
\layout Itemize
Phase five is register allocation.
There are two parts to this process.
\newline
\newline
The first part I call 'register packing' (for lack of a better term).
In this case several MCU specific expression folding is done to reduce
register pressure.
\newline
\newline
The second part is more MCU independent and deals with allocating registers
to the remaining live ranges.
A lot of MCU specific code does creep into this phase because of the limited
number of index registers available in the 8051.
\layout Itemize
The Code generation phase is (unhappily), entirely MCU dependent and very
little (if any at all) of this code can be reused for other MCU.
However the scheme for allocating a homogenized assembler operand for each
iCode operand may be reused.
\layout Itemize
As mentioned in the optimization section the peep-hole optimizer is rule
based system, which can reprogrammed for other MCUs.
\layout Section
SDCDB - Source Level Debugger
\layout Standard
SDCC is distributed with a source level debugger.
The debugger uses a command line interface, the command repertoire of the
debugger has been kept as close to gdb (the GNU debugger) as possible.
The configuration and build process is part of the standard compiler installati
on, which also builds and installs the debugger in the target directory
specified during configuration.
The debugger allows you debug BOTH at the C source and at the ASM source
level.
\layout Subsection
Compiling for Debugging
\layout Standard
The \SpecialChar \-
\SpecialChar \-
debug option must be specified for all files for which debug information
is to be generated.
The complier generates a .cdb file for each of these files.
The linker updates the .cdb file with the address information.
This .cdb is used by the debugger.
\layout Subsection
How the Debugger Works
\layout Standard
When the --debug option is specified the compiler generates extra symbol
information some of which are put into the the assembler source and some
are put into the .cdb file, the linker updates the .cdb file with the address
information for the symbols.
The debugger reads the symbolic information generated by the compiler &
the address information generated by the linker.
It uses the SIMULATOR (Daniel's S51) to execute the program, the program
execution is controlled by the debugger.
When a command is issued for the debugger, it translates it into appropriate
commands for the simulator.
\layout Subsection
Starting the Debugger
\layout Standard
The debugger can be started using the following command line.
(Assume the file you are debugging has the file name foo).
\newline
\newline
\family sans
\series bold
sdcdb foo
\newline
\family default
\series default
\newline
The debugger will look for the following files.
\layout Itemize
foo.c - the source file.
\layout Itemize
foo.cdb - the debugger symbol information file.
\layout Itemize
foo.ihx - the intel hex format object file.
\layout Subsection
Command Line Options.
\layout Itemize
--directory=<source file directory> this option can used to specify the
directory search list.
The debugger will look into the directory list specified for source, cdb
& ihx files.
The items in the directory list must be separated by ':', e.g.
if the source files can be in the directories /home/src1 and /home/src2,
the --directory option should be --directory=/home/src1:/home/src2.
Note there can be no spaces in the option.
\layout Itemize
-cd <directory> - change to the <directory>.
\layout Itemize
-fullname - used by GUI front ends.
\layout Itemize
-cpu <cpu-type> - this argument is passed to the simulator please see the
simulator docs for details.
\layout Itemize
-X <Clock frequency > this options is passed to the simulator please see
the simulator docs for details.
\layout Itemize
-s <serial port file> passed to simulator see the simulator docs for details.
\layout Itemize
-S <serial in,out> passed to simulator see the simulator docs for details.
\layout Subsection
Debugger Commands.
\layout Standard
As mention earlier the command interface for the debugger has been deliberately
kept as close the GNU debugger gdb, as possible.
This will help the integration with existing graphical user interfaces
(like ddd, xxgdb or xemacs) existing for the GNU debugger.
\layout Subsubsection
break [line | file:line | function | file:function]
\layout Standard
Set breakpoint at specified line or function:
\newline
\newline
\family sans
\series bold
sdcdb>break 100
\newline
sdcdb>break foo.c:100
\newline
sdcdb>break funcfoo
\newline
sdcdb>break foo.c:funcfoo
\layout Subsubsection
clear [line | file:line | function | file:function ]
\layout Standard
Clear breakpoint at specified line or function:
\newline
\newline
\family sans
\series bold
sdcdb>clear 100
\newline
sdcdb>clear foo.c:100
\newline
sdcdb>clear funcfoo
\newline
sdcdb>clear foo.c:funcfoo
\layout Subsubsection
continue
\layout Standard
Continue program being debugged, after breakpoint.
\layout Subsubsection
finish
\layout Standard
Execute till the end of the current function.
\layout Subsubsection
delete [n]
\layout Standard
Delete breakpoint number 'n'.
If used without any option clear ALL user defined break points.
\layout Subsubsection
info [break | stack | frame | registers ]
\layout Itemize
info break - list all breakpoints
\layout Itemize
info stack - show the function call stack.
\layout Itemize
info frame - show information about the current execution frame.
\layout Itemize
info registers - show content of all registers.
\layout Subsubsection
step
\layout Standard
Step program until it reaches a different source line.
\layout Subsubsection
next
\layout Standard
Step program, proceeding through subroutine calls.
\layout Subsubsection
run
\layout Standard
Start debugged program.
\layout Subsubsection
ptype variable
\layout Standard
Print type information of the variable.
\layout Subsubsection
print variable
\layout Standard
print value of variable.
\layout Subsubsection
file filename
\layout Standard
load the given file name.
Note this is an alternate method of loading file for debugging.
\layout Subsubsection
frame
\layout Standard
print information about current frame.
\layout Subsubsection
set srcmode
\layout Standard
Toggle between C source & assembly source.
\layout Subsubsection
! simulator command
\layout Standard
Send the string following '!' to the simulator, the simulator response is
displayed.
Note the debugger does not interpret the command being sent to the simulator,
so if a command like 'go' is sent the debugger can loose its execution
context and may display incorrect values.
\layout Subsubsection
quit.
\layout Standard
"Watch me now.
Iam going Down.
My name is Bobby Brown"
\layout Subsection
Interfacing with XEmacs.
\layout Standard
Two files (in emacs lisp) are provided for the interfacing with XEmacs,
sdcdb.el and sdcdbsrc.el.
These two files can be found in the $(prefix)/bin directory after the installat
ion is complete.
These files need to be loaded into XEmacs for the interface to work.
This can be done at XEmacs startup time by inserting the following into
your '.xemacs' file (which can be found in your HOME directory):
\newline
\newline
\family typewriter
(load-file sdcdbsrc.el)
\family default
\newline
\newline
.xemacs is a lisp file so the () around the command is REQUIRED.
The files can also be loaded dynamically while XEmacs is running, set the
environment variable 'EMACSLOADPATH' to the installation bin directory
(<installdir>/bin), then enter the following command ESC-x load-file sdcdbsrc.
To start the interface enter the following command:
\newline
\newline
\family sans
\series bold
ESC-x sdcdbsrc
\family default
\series default
\newline
\newline
You will prompted to enter the file name to be debugged.
\newline
\newline
The command line options that are passed to the simulator directly are bound
to default values in the file sdcdbsrc.el.
The variables are listed below, these values maybe changed as required.
\layout Itemize
sdcdbsrc-cpu-type '51
\layout Itemize
sdcdbsrc-frequency '11059200
\layout Itemize
sdcdbsrc-serial nil
\layout Standard
The following is a list of key mapping for the debugger interface.
\layout Standard
\SpecialChar ~
\family typewriter
\newline
;; Current Listing ::
\newline
;;key\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
binding\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
Comment
\newline
;;---\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
-------\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
-------
\newline
;;
\newline
;; n\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdb-next-from-src\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
SDCDB next command
\newline
;; b\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdb-back-from-src\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
SDCDB back command
\newline
;; c\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdb-cont-from-src\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
SDCDB continue command
\newline
;; s\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdb-step-from-src\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
SDCDB step command
\newline
;; ?\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdb-whatis-c-sexp\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
SDCDB ptypecommand for data at
\newline
;;\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
buffer point
\newline
;; x\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdbsrc-delete\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
SDCDB Delete all breakpoints if no arg
\newline
;;\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
given or delete arg (C-u arg x)
\newline
;; m\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdbsrc-frame\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
SDCDB Display current frame if no arg,
\newline
;;\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
given or display frame arg
\newline
;;\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
buffer point
\newline
;; !\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdbsrc-goto-sdcdb\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
Goto the SDCDB output buffer
\newline
;; p\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdb-print-c-sexp\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
SDCDB print command for data at
\newline
;;\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
buffer point
\newline
;; g\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdbsrc-goto-sdcdb\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
Goto the SDCDB output buffer
\newline
;; t\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdbsrc-mode\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
Toggles Sdcdbsrc mode (turns it off)
\newline
;;
\newline
;; C-c C-f\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdb-finish-from-src\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
SDCDB finish command
\newline
;;
\newline
;; C-x SPC\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdb-break\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
Set break for line with point
\newline
;; ESC t\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdbsrc-mode\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
Toggle Sdcdbsrc mode
\newline
;; ESC m\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
sdcdbsrc-srcmode\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
\SpecialChar ~
Toggle list mode
\newline
;;
\family default
\newline
\layout Section
Other Processors
\layout Subsection
The Z80 and gbz80 port
\layout Standard
SDCC can target both the Zilog Z80 and the Nintendo Gameboy's Z80-like gbz80.
The port is incomplete - long support is incomplete (mul, div and mod are
unimplimented), and both float and bitfield support is missing.
Apart from that the code generated is correct.
\layout Standard
As always, the code is the authoritave reference - see z80/ralloc.c and z80/gen.c.
The stack frame is similar to that generated by the IAR Z80 compiler.
IX is used as the base pointer, HL is used as a temporary register, and
BC and DE are available for holding varibles.
IY is currently unusued.
Return values are stored in HL.
One bad side effect of using IX as the base pointer is that a functions
stack frame is limited to 127 bytes - this will be fixed in a later version.
\layout Section
Support
\layout Standard
SDCC has grown to be a large project.
The compiler alone (without the preprocessor, assembler and linker) is
about 40,000 lines of code (blank stripped).
The open source nature of this project is a key to its continued growth
and support.
You gain the benefit and support of many active software developers and
end users.
Is SDCC perfect? No, that's why we need your help.
The developers take pride in fixing reported bugs.
You can help by reporting the bugs and helping other SDCC users.
There are lots of ways to contribute, and we encourage you to take part
in making SDCC a great software package.
\layout Subsection
Reporting Bugs
\layout Standard
Send an email to the mailing list at 'user-sdcc@sdcc.sourceforge.net' or 'devel-sd
cc@sdcc.sourceforge.net'.
Bugs will be fixed ASAP.
When reporting a bug, it is very useful to include a small test program
which reproduces the problem.
If you can isolate the problem by looking at the generated assembly code,
this can be very helpful.
Compiling your program with the --dumpall option can sometimes be useful
in locating optimization problems.
\layout Section
Acknowledgments
\layout Standard
Sandeep Dutta (sandeep.dutta@usa.net) - SDCC, the compiler, MCS51 code generator,
Debugger, AVR port
\newline
Alan Baldwin (baldwin@shop-pdp.kent.edu) - Initial version of ASXXXX & ASLINK.
\newline
John Hartman (jhartman@compuserve.com) - Porting ASXXX & ASLINK for 8051
\newline
Dmitry S.
Obukhov (dso@usa.net) - malloc & serial i/o routines.
\newline
Daniel Drotos (drdani@mazsola.iit.uni-miskolc.hu) - for his Freeware simulator
\newline
Malini Dutta(malini_dutta@hotmail.com) - my wife for her patience and support.
\newline
Unknown - for the GNU C - preprocessor.
\newline
Michael Hope - The Z80 and Z80GB port, 186 development
\newline
Kevin Vigor - The DS390 port.
\newline
Johan Knol - Lots of fixes and enhancements, DS390/TINI libs.
\newline
Scott Datallo - The PIC port.
\newline
\newline
\emph on
Thanks to all the other volunteer developers who have helped with coding,
testing, web-page creation, distribution sets, etc.
You know who you are :-)
\emph default
\newline
\layout Standard
This document was initially written by Sandeep Dutta
\layout Standard
All product names mentioned herein may be trademarks of their respective
companies.
\layout Standard
\begin_inset LatexCommand \printindex{}
\end_inset
\the_end