/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include #include "build_config.h" #include "common/axis.h" #include "common/maths.h" #include "drivers/sensor.h" #include "drivers/accgyro.h" #include "sensors/sensors.h" #include "sensors/gyro.h" #include "sensors/acceleration.h" #include "rx/rx.h" #include "io/rc_controls.h" #include "io/gps.h" #include "flight/pid.h" #include "flight/imu.h" #include "flight/navigation.h" #include "flight/autotune.h" #include "config/runtime_config.h" extern uint16_t cycleTime; extern uint8_t motorCount; int16_t heading; int16_t axisPID[3]; #ifdef BLACKBOX int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3]; #endif // PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction uint8_t dynP8[3], dynI8[3], dynD8[3], PIDweight[3]; static int32_t errorGyroI[3] = { 0, 0, 0 }; static float errorGyroIf[3] = { 0.0f, 0.0f, 0.0f }; static int32_t errorAngleI[2] = { 0, 0 }; static float errorAngleIf[2] = { 0.0f, 0.0f }; static void pidMultiWii(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig); typedef void (*pidControllerFuncPtr)(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig); // pid controller function prototype pidControllerFuncPtr pid_controller = pidMultiWii; // which pid controller are we using, defaultMultiWii void pidResetErrorAngle(void) { errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; errorAngleIf[ROLL] = 0.0f; errorAngleIf[PITCH] = 0.0f; } void pidResetErrorGyro(void) { errorGyroI[ROLL] = 0; errorGyroI[PITCH] = 0; errorGyroI[YAW] = 0; errorGyroIf[ROLL] = 0.0f; errorGyroIf[PITCH] = 0.0f; errorGyroIf[YAW] = 0.0f; } const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH }; #ifdef AUTOTUNE bool shouldAutotune(void) { return ARMING_FLAG(ARMED) && FLIGHT_MODE(AUTOTUNE_MODE); } #endif static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) { float RateError, errorAngle, AngleRate, gyroRate; float ITerm,PTerm,DTerm; int32_t stickPosAil, stickPosEle, mostDeflectedPos; static float lastGyroRate[3]; static float delta1[3], delta2[3]; float delta, deltaSum; float dT; int axis; float horizonLevelStrength = 1; dT = (float)cycleTime * 0.000001f; if (FLIGHT_MODE(HORIZON_MODE)) { // Figure out the raw stick positions stickPosAil = getRcStickDeflection(FD_ROLL, rxConfig->midrc); stickPosEle = getRcStickDeflection(FD_PITCH, rxConfig->midrc); if(ABS(stickPosAil) > ABS(stickPosEle)){ mostDeflectedPos = ABS(stickPosAil); } else { mostDeflectedPos = ABS(stickPosEle); } // Progressively turn off the horizon self level strength as the stick is banged over horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection if(pidProfile->H_sensitivity == 0){ horizonLevelStrength = 0; } else { horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->H_sensitivity)) + 1, 0, 1); } } // ----------PID controller---------- for (axis = 0; axis < 3; axis++) { // -----Get the desired angle rate depending on flight mode uint8_t rate = controlRateConfig->rates[axis]; if (axis == FD_YAW) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand) 100dps to 1100dps max yaw rate AngleRate = (float)((rate + 10) * rcCommand[YAW]) / 50.0f; } else { // calculate error and limit the angle to the max inclination #ifdef GPS errorAngle = (constrain(rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here #else errorAngle = (constrain(rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here #endif #ifdef AUTOTUNE if (shouldAutotune()) { errorAngle = autotune(rcAliasToAngleIndexMap[axis], &inclination, errorAngle); } #endif if (FLIGHT_MODE(ANGLE_MODE)) { // it's the ANGLE mode - control is angle based, so control loop is needed AngleRate = errorAngle * pidProfile->A_level; } else { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID AngleRate = (float)((rate + 20) * rcCommand[axis]) / 50.0f; // 200dps to 1200dps max yaw rate if (FLIGHT_MODE(HORIZON_MODE)) { // mix up angle error to desired AngleRate to add a little auto-level feel AngleRate += errorAngle * pidProfile->H_level * horizonLevelStrength; } } } gyroRate = gyroADC[axis] * gyro.scale; // gyro output scaled to dps // --------low-level gyro-based PID. ---------- // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes // -----calculate scaled error.AngleRates // multiplication of rcCommand corresponds to changing the sticks scaling here RateError = AngleRate - gyroRate; // -----calculate P component PTerm = RateError * pidProfile->P_f[axis] * PIDweight[axis] / 100; // -----calculate I component. Note that PIDweight is divided by 10, because it is simplified formule from the previous multiply by 10 errorGyroIf[axis] = constrainf(errorGyroIf[axis] + RateError * dT * pidProfile->I_f[axis] * PIDweight[axis] / 10, -250.0f, 250.0f); // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated. // I coefficient (I8) moved before integration to make limiting independent from PID settings ITerm = errorGyroIf[axis]; //-----calculate D-term delta = gyroRate - lastGyroRate[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastGyroRate[axis] = gyroRate; // Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference // would be scaled by different dt each time. Division by dT fixes that. delta *= (1.0f / dT); // add moving average here to reduce noise deltaSum = delta1[axis] + delta2[axis] + delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; DTerm = constrainf((deltaSum / 3.0f) * pidProfile->D_f[axis] * PIDweight[axis] / 100, -300.0f, 300.0f); // -----calculate total PID output axisPID[axis] = constrain(lrintf(PTerm + ITerm - DTerm), -1000, 1000); #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = -DTerm; #endif } } static void pidMultiWii(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) { UNUSED(rxConfig); int axis, prop; int32_t error, errorAngle; int32_t PTerm, ITerm, PTermACC = 0, ITermACC = 0, PTermGYRO = 0, ITermGYRO = 0, DTerm; static int16_t lastGyro[3] = { 0, 0, 0 }; static int32_t delta1[3], delta2[3]; int32_t deltaSum; int32_t delta; UNUSED(controlRateConfig); // **** PITCH & ROLL & YAW PID **** prop = MIN(MAX(ABS(rcCommand[PITCH]), ABS(rcCommand[ROLL])), 500); // range [0;500] for (axis = 0; axis < 3; axis++) { if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && (axis == FD_ROLL || axis == FD_PITCH)) { // MODE relying on ACC // observe max inclination #ifdef GPS errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; #else errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; #endif #ifdef AUTOTUNE if (shouldAutotune()) { errorAngle = DEGREES_TO_DECIDEGREES(autotune(rcAliasToAngleIndexMap[axis], &inclination, DECIDEGREES_TO_DEGREES(errorAngle))); } #endif PTermACC = errorAngle * pidProfile->P8[PIDLEVEL] / 100; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result PTermACC = constrain(PTermACC, -pidProfile->D8[PIDLEVEL] * 5, +pidProfile->D8[PIDLEVEL] * 5); errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp ITermACC = (errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12; } if (!FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE) || axis == FD_YAW) { // MODE relying on GYRO or YAW axis error = (int32_t) rcCommand[axis] * 10 * 8 / pidProfile->P8[axis]; error -= gyroADC[axis] / 4; PTermGYRO = rcCommand[axis]; errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp if ((ABS(gyroADC[axis]) > (640 * 4)) || (axis == FD_YAW && ABS(rcCommand[axis]) > 100)) errorGyroI[axis] = 0; ITermGYRO = (errorGyroI[axis] / 125 * pidProfile->I8[axis]) / 64; } if (FLIGHT_MODE(HORIZON_MODE) && (axis == FD_ROLL || axis == FD_PITCH)) { PTerm = (PTermACC * (500 - prop) + PTermGYRO * prop) / 500; ITerm = (ITermACC * (500 - prop) + ITermGYRO * prop) / 500; } else { if (FLIGHT_MODE(ANGLE_MODE) && (axis == FD_ROLL || axis == FD_PITCH)) { PTerm = PTermACC; ITerm = ITermACC; } else { PTerm = PTermGYRO; ITerm = ITermGYRO; } } PTerm -= ((int32_t)gyroADC[axis] / 4) * dynP8[axis] / 10 / 8; // 32 bits is needed for calculation delta = (gyroADC[axis] - lastGyro[axis]) / 4; lastGyro[axis] = gyroADC[axis]; deltaSum = delta1[axis] + delta2[axis] + delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; DTerm = (deltaSum * dynD8[axis]) / 32; axisPID[axis] = PTerm + ITerm - DTerm; #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = -DTerm; #endif } } static void pidMultiWii23(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) { UNUSED(rxConfig); int axis, prop = 0; int32_t rc, error, errorAngle; int32_t PTerm, ITerm, PTermACC, ITermACC, DTerm; static int16_t lastGyro[2] = { 0, 0 }; static int32_t delta1[2] = { 0, 0 }, delta2[2] = { 0, 0 }; int32_t delta; if (FLIGHT_MODE(HORIZON_MODE)) { prop = MIN(MAX(ABS(rcCommand[PITCH]), ABS(rcCommand[ROLL])), 512); } // PITCH & ROLL for (axis = 0; axis < 2; axis++) { rc = rcCommand[axis] << 1; error = rc - (gyroADC[axis] / 4); errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp 16 bits is ok here if (ABS(gyroADC[axis]) > (640 * 4)) { errorGyroI[axis] = 0; } ITerm = (errorGyroI[axis] >> 7) * pidProfile->I8[axis] >> 6; // 16 bits is ok here 16000/125 = 128 ; 128*250 = 32000 PTerm = (int32_t)rc * pidProfile->P8[axis] >> 6; if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { // axis relying on ACC // 50 degrees max inclination #ifdef GPS errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; #else errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; #endif #ifdef AUTOTUNE if (shouldAutotune()) { errorAngle = DEGREES_TO_DECIDEGREES(autotune(rcAliasToAngleIndexMap[axis], &inclination, DECIDEGREES_TO_DEGREES(errorAngle))); } #endif errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp //16 bits is ok here PTermACC = ((int32_t)errorAngle * pidProfile->P8[PIDLEVEL]) >> 7; // 32 bits is needed for calculation: errorAngle*P8 could exceed 32768 16 bits is ok for result int16_t limit = pidProfile->D8[PIDLEVEL] * 5; PTermACC = constrain(PTermACC, -limit, +limit); ITermACC = ((int32_t)errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12; // 32 bits is needed for calculation:10000*I8 could exceed 32768 16 bits is ok for result ITerm = ITermACC + ((ITerm - ITermACC) * prop >> 9); PTerm = PTermACC + ((PTerm - PTermACC) * prop >> 9); } PTerm -= ((int32_t)(gyroADC[axis] / 4) * dynP8[axis]) >> 6; // 32 bits is needed for calculation delta = (gyroADC[axis] - lastGyro[axis]) / 4; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastGyro[axis] = gyroADC[axis]; DTerm = delta1[axis] + delta2[axis] + delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; DTerm = ((int32_t)DTerm * dynD8[axis]) >> 5; // 32 bits is needed for calculation axisPID[axis] = PTerm + ITerm - DTerm; #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = -DTerm; #endif } //YAW rc = (int32_t)rcCommand[FD_YAW] * (2 * controlRateConfig->rates[FD_YAW] + 30) >> 5; #ifdef ALIENWII32 error = rc - gyroADC[FD_YAW]; #else error = rc - (gyroADC[FD_YAW] / 4); #endif errorGyroI[FD_YAW] += (int32_t)error * pidProfile->I8[FD_YAW]; errorGyroI[FD_YAW] = constrain(errorGyroI[FD_YAW], 2 - ((int32_t)1 << 28), -2 + ((int32_t)1 << 28)); if (ABS(rc) > 50) errorGyroI[FD_YAW] = 0; PTerm = (int32_t)error * pidProfile->P8[FD_YAW] >> 6; // TODO: Bitwise shift on a signed integer is not recommended // Constrain YAW by D value if not servo driven in that case servolimits apply if(motorCount >= 4 && pidProfile->yaw_p_limit < YAW_P_LIMIT_MAX) { PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit); } ITerm = constrain((int16_t)(errorGyroI[FD_YAW] >> 13), -GYRO_I_MAX, +GYRO_I_MAX); axisPID[FD_YAW] = PTerm + ITerm; #ifdef BLACKBOX axisPID_P[FD_YAW] = PTerm; axisPID_I[FD_YAW] = ITerm; axisPID_D[FD_YAW] = 0; #endif } static void pidMultiWiiHybrid(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) { UNUSED(rxConfig); int axis, prop; int32_t rc, error, errorAngle; int32_t PTerm, ITerm, PTermACC = 0, ITermACC = 0, PTermGYRO = 0, ITermGYRO = 0, DTerm; static int16_t lastGyro[2] = { 0, 0 }; static int32_t delta1[2] = { 0, 0 }, delta2[2] = { 0, 0 }; int32_t deltaSum; int32_t delta; UNUSED(controlRateConfig); // **** PITCH & ROLL **** prop = MIN(MAX(ABS(rcCommand[PITCH]), ABS(rcCommand[ROLL])), 500); // range [0;500] for (axis = 0; axis < 2; axis++) { if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) { // MODE relying on ACC // observe max inclination #ifdef GPS errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; #else errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; #endif #ifdef AUTOTUNE if (shouldAutotune()) { errorAngle = DEGREES_TO_DECIDEGREES(autotune(rcAliasToAngleIndexMap[axis], &inclination, DECIDEGREES_TO_DEGREES(errorAngle))); } #endif PTermACC = errorAngle * pidProfile->P8[PIDLEVEL] / 100; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result PTermACC = constrain(PTermACC, -pidProfile->D8[PIDLEVEL] * 5, +pidProfile->D8[PIDLEVEL] * 5); errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp ITermACC = (errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12; } if (!FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { // MODE relying on GYRO error = (int32_t) rcCommand[axis] * 10 * 8 / pidProfile->P8[axis]; error -= gyroADC[axis] / 4; PTermGYRO = rcCommand[axis]; errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp if (ABS(gyroADC[axis]) > (640 * 4)) errorGyroI[axis] = 0; ITermGYRO = (errorGyroI[axis] / 125 * pidProfile->I8[axis]) / 64; } if (FLIGHT_MODE(HORIZON_MODE)) { PTerm = (PTermACC * (500 - prop) + PTermGYRO * prop) / 500; ITerm = (ITermACC * (500 - prop) + ITermGYRO * prop) / 500; } else { if (FLIGHT_MODE(ANGLE_MODE)) { PTerm = PTermACC; ITerm = ITermACC; } else { PTerm = PTermGYRO; ITerm = ITermGYRO; } } PTerm -= ((int32_t)gyroADC[axis] / 4) * dynP8[axis] / 10 / 8; // 32 bits is needed for calculation delta = (gyroADC[axis] - lastGyro[axis]) / 4; lastGyro[axis] = gyroADC[axis]; deltaSum = delta1[axis] + delta2[axis] + delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; DTerm = (deltaSum * dynD8[axis]) / 32; axisPID[axis] = PTerm + ITerm - DTerm; #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = -DTerm; #endif } //YAW rc = (int32_t)rcCommand[FD_YAW] * (2 * controlRateConfig->rates[FD_YAW] + 30) >> 5; #ifdef ALIENWII32 error = rc - gyroADC[FD_YAW]; #else error = rc - (gyroADC[FD_YAW] / 4); #endif errorGyroI[FD_YAW] += (int32_t)error * pidProfile->I8[FD_YAW]; errorGyroI[FD_YAW] = constrain(errorGyroI[FD_YAW], 2 - ((int32_t)1 << 28), -2 + ((int32_t)1 << 28)); if (ABS(rc) > 50) errorGyroI[FD_YAW] = 0; PTerm = (int32_t)error * pidProfile->P8[FD_YAW] >> 6; // Constrain YAW by D value if not servo driven in that case servolimits apply if(motorCount >= 4 && pidProfile->yaw_p_limit < YAW_P_LIMIT_MAX) { PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit); } ITerm = constrain((int16_t)(errorGyroI[FD_YAW] >> 13), -GYRO_I_MAX, +GYRO_I_MAX); axisPID[FD_YAW] = PTerm + ITerm; #ifdef BLACKBOX axisPID_P[FD_YAW] = PTerm; axisPID_I[FD_YAW] = ITerm; axisPID_D[FD_YAW] = 0; #endif } static void pidHarakiri(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) { UNUSED(rxConfig); float delta, RCfactor, rcCommandAxis, MainDptCut, gyroADCQuant; float PTerm, ITerm, DTerm, PTermACC = 0.0f, ITermACC = 0.0f, ITermGYRO, error, prop = 0.0f; static float lastGyro[2] = { 0.0f, 0.0f }, lastDTerm[2] = { 0.0f, 0.0f }; uint8_t axis; float ACCDeltaTimeINS, FLOATcycleTime, Mwii3msTimescale; // MainDptCut = RCconstPI / (float)cfg.maincuthz; // Initialize Cut off frequencies for mainpid D MainDptCut = RCconstPI / MAIN_CUT_HZ; // maincuthz (default 12Hz, Range 1-50Hz), hardcoded for now FLOATcycleTime = (float)constrain(cycleTime, 1, 100000); // 1us - 100ms ACCDeltaTimeINS = FLOATcycleTime * 0.000001f; // ACCDeltaTimeINS is in seconds now RCfactor = ACCDeltaTimeINS / (MainDptCut + ACCDeltaTimeINS); // used for pt1 element if (FLIGHT_MODE(HORIZON_MODE)) { prop = (float)MIN(MAX(ABS(rcCommand[PITCH]), ABS(rcCommand[ROLL])), 450) / 450.0f; } for (axis = 0; axis < 2; axis++) { int32_t tmp = (int32_t)((float)gyroADC[axis] * 0.3125f); // Multiwii masks out the last 2 bits, this has the same idea gyroADCQuant = (float)tmp * 3.2f; // but delivers more accuracy and also reduces jittery flight rcCommandAxis = (float)rcCommand[axis]; // Calculate common values for pid controllers if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { #ifdef GPS error = constrain(2.0f * rcCommandAxis + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; #else error = constrain(2.0f * rcCommandAxis, -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; #endif #ifdef AUTOTUNE if (shouldAutotune()) { error = DEGREES_TO_DECIDEGREES(autotune(rcAliasToAngleIndexMap[axis], &inclination, DECIDEGREES_TO_DEGREES(error))); } #endif PTermACC = error * (float)pidProfile->P8[PIDLEVEL] * 0.008f; float limitf = (float)pidProfile->D8[PIDLEVEL] * 5.0f; PTermACC = constrain(PTermACC, -limitf, +limitf); errorAngleIf[axis] = constrainf(errorAngleIf[axis] + error * ACCDeltaTimeINS, -30.0f, +30.0f); ITermACC = errorAngleIf[axis] * (float)pidProfile->I8[PIDLEVEL] * 0.08f; } if (!FLIGHT_MODE(ANGLE_MODE)) { if (ABS((int16_t)gyroADC[axis]) > 2560) { errorGyroIf[axis] = 0.0f; } else { error = (rcCommandAxis * 320.0f / (float)pidProfile->P8[axis]) - gyroADCQuant; errorGyroIf[axis] = constrainf(errorGyroIf[axis] + error * ACCDeltaTimeINS, -192.0f, +192.0f); } ITermGYRO = errorGyroIf[axis] * (float)pidProfile->I8[axis] * 0.01f; if (FLIGHT_MODE(HORIZON_MODE)) { PTerm = PTermACC + prop * (rcCommandAxis - PTermACC); ITerm = ITermACC + prop * (ITermGYRO - ITermACC); } else { PTerm = rcCommandAxis; ITerm = ITermGYRO; } } else { PTerm = PTermACC; ITerm = ITermACC; } PTerm -= gyroADCQuant * dynP8[axis] * 0.003f; delta = (gyroADCQuant - lastGyro[axis]) / ACCDeltaTimeINS; lastGyro[axis] = gyroADCQuant; lastDTerm[axis] += RCfactor * (delta - lastDTerm[axis]); DTerm = lastDTerm[axis] * dynD8[axis] * 0.00007f; axisPID[axis] = lrintf(PTerm + ITerm - DTerm); // Round up result. #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = -DTerm; #endif } Mwii3msTimescale = (int32_t)FLOATcycleTime & (int32_t)~3; // Filter last 2 bit jitter Mwii3msTimescale /= 3000.0f; if (OLD_YAW) { // [0/1] 0 = multiwii 2.3 yaw, 1 = older yaw. hardcoded for now PTerm = ((int32_t)pidProfile->P8[FD_YAW] * (100 - (int32_t)controlRateConfig->rates[FD_YAW] * (int32_t)ABS(rcCommand[FD_YAW]) / 500)) / 100; int32_t tmp = lrintf(gyroADC[FD_YAW] * 0.25f); PTerm = rcCommand[FD_YAW] - tmp * PTerm / 80; if ((ABS(tmp) > 640) || (ABS(rcCommand[FD_YAW]) > 100)) { errorGyroI[FD_YAW] = 0; } else { error = ((int32_t)rcCommand[FD_YAW] * 80 / (int32_t)pidProfile->P8[FD_YAW]) - tmp; errorGyroI[FD_YAW] = constrain(errorGyroI[FD_YAW] + (int32_t)(error * Mwii3msTimescale), -16000, +16000); // WindUp ITerm = (errorGyroI[FD_YAW] / 125 * pidProfile->I8[FD_YAW]) >> 6; } } else { int32_t tmp = ((int32_t)rcCommand[FD_YAW] * (((int32_t)controlRateConfig->rates[FD_YAW] << 1) + 40)) >> 5; error = tmp - lrintf(gyroADC[FD_YAW] * 0.25f); // Less Gyrojitter works actually better if (ABS(tmp) > 50) { errorGyroI[FD_YAW] = 0; } else { errorGyroI[FD_YAW] = constrain(errorGyroI[FD_YAW] + (int32_t)(error * (float)pidProfile->I8[FD_YAW] * Mwii3msTimescale), -268435454, +268435454); } ITerm = constrain(errorGyroI[FD_YAW] >> 13, -GYRO_I_MAX, +GYRO_I_MAX); PTerm = ((int32_t)error * (int32_t)pidProfile->P8[FD_YAW]) >> 6; if(motorCount >= 4 && pidProfile->yaw_p_limit < YAW_P_LIMIT_MAX) { // Constrain FD_YAW by D value if not servo driven in that case servolimits apply PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit); } } axisPID[FD_YAW] = PTerm + ITerm; axisPID[FD_YAW] = lrintf(axisPID[FD_YAW]); // Round up result. #ifdef BLACKBOX axisPID_P[FD_YAW] = PTerm; axisPID_I[FD_YAW] = ITerm; axisPID_D[FD_YAW] = 0; #endif } static void pidRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) { UNUSED(rxConfig); int32_t errorAngle; int axis; int32_t delta, deltaSum; static int32_t delta1[3], delta2[3]; int32_t PTerm, ITerm, DTerm; static int32_t lastError[3] = { 0, 0, 0 }; int32_t AngleRateTmp, RateError; int8_t horizonLevelStrength = 100; int32_t stickPosAil, stickPosEle, mostDeflectedPos; if (FLIGHT_MODE(HORIZON_MODE)) { // Figure out the raw stick positions stickPosAil = getRcStickDeflection(FD_ROLL, rxConfig->midrc); stickPosEle = getRcStickDeflection(FD_PITCH, rxConfig->midrc); if(ABS(stickPosAil) > ABS(stickPosEle)){ mostDeflectedPos = ABS(stickPosAil); } else { mostDeflectedPos = ABS(stickPosEle); } // Progressively turn off the horizon self level strength as the stick is banged over horizonLevelStrength = (500 - mostDeflectedPos) / 5; // 100 at centre stick, 0 = max stick deflection // Using Level D as a Sensitivity for Horizon. 0 more level to 255 more rate. Default value of 100 seems to work fine. // For more rate mode increase D and slower flips and rolls will be possible horizonLevelStrength = constrain((10 * (horizonLevelStrength - 100) * (10 * pidProfile->D8[PIDLEVEL] / 80) / 100) + 100, 0, 100); } // ----------PID controller---------- for (axis = 0; axis < 3; axis++) { uint8_t rate = controlRateConfig->rates[axis]; // -----Get the desired angle rate depending on flight mode if (axis == FD_YAW) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand) AngleRateTmp = (((int32_t)(rate + 27) * rcCommand[YAW]) >> 5); } else { // calculate error and limit the angle to max configured inclination #ifdef GPS errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; // 16 bits is ok here #else errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; // 16 bits is ok here #endif #ifdef AUTOTUNE if (shouldAutotune()) { errorAngle = DEGREES_TO_DECIDEGREES(autotune(rcAliasToAngleIndexMap[axis], &inclination, DECIDEGREES_TO_DEGREES(errorAngle))); } #endif if (!FLIGHT_MODE(ANGLE_MODE)) { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID AngleRateTmp = ((int32_t)(rate + 27) * rcCommand[axis]) >> 4; if (FLIGHT_MODE(HORIZON_MODE)) { // mix up angle error to desired AngleRateTmp to add a little auto-level feel. horizonLevelStrength is scaled to the stick input AngleRateTmp += (errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 100) >> 4; } } else { // it's the ANGLE mode - control is angle based, so control loop is needed AngleRateTmp = (errorAngle * pidProfile->P8[PIDLEVEL]) >> 4; } } // --------low-level gyro-based PID. ---------- // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes // -----calculate scaled error.AngleRates // multiplication of rcCommand corresponds to changing the sticks scaling here RateError = AngleRateTmp - (gyroADC[axis] / 4); // -----calculate P component PTerm = (RateError * pidProfile->P8[axis] * PIDweight[axis] / 100) >> 7; // -----calculate I component // there should be no division before accumulating the error to integrator, because the precision would be reduced. // Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used. // Time correction (to avoid different I scaling for different builds based on average cycle time) // is normalized to cycle time = 2048. errorGyroI[axis] = errorGyroI[axis] + ((RateError * cycleTime) >> 11) * pidProfile->I8[axis] * PIDweight[axis] / 100; // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated. // I coefficient (I8) moved before integration to make limiting independent from PID settings errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13); ITerm = errorGyroI[axis] >> 13; //-----calculate D-term delta = RateError - lastError[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastError[axis] = RateError; // Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference // would be scaled by different dt each time. Division by dT fixes that. delta = (delta * ((uint16_t) 0xFFFF / (cycleTime >> 4))) >> 6; // add moving average here to reduce noise deltaSum = delta1[axis] + delta2[axis] + delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; DTerm = (deltaSum * pidProfile->D8[axis] * PIDweight[axis] / 100) >> 8; // -----calculate total PID output axisPID[axis] = PTerm + ITerm + DTerm; #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = DTerm; #endif } } void pidSetController(int type) { switch (type) { case 0: default: pid_controller = pidMultiWii; break; case 1: pid_controller = pidRewrite; break; case 2: pid_controller = pidLuxFloat; break; case 3: pid_controller = pidMultiWii23; break; case 4: pid_controller = pidMultiWiiHybrid; break; case 5: pid_controller = pidHarakiri; } }